首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为 (1)求A. (2)求一个满足要求的正交矩阵Q.
admin
2020-03-05
18
问题
二次型f(x
1
,x
2
,x
3
)=X
T
AX在正交变换X=QY下化为10y
1
2
一4y
2
2
一4y
3
2
,Q的第1列为
(1)求A.
(2)求一个满足要求的正交矩阵Q.
选项
答案
标准二次型10y
1
2
一4y
2
2
一4y
3
2
的矩阵为 [*] 则Q
-1
AQ=Q
T
AQ=B,A和B相似.于是A的特征值是10,一4,一4. (1)Q的第1列[*]是A的属于10的特征向量,其[*]η
1
=(1,2,3)
T
也是属于10的特征向量.于是A的属于一4的特征向量和(1,2,3)
T
正交,因此就是方程 x
1
+2x
2
+3x
3
=0 的非零解.求出此方程的一个正交基础解系η
2
=(2,一1,0)
T
,η
3
=[*] 建立矩阵方程A(η
1
,η
2
,η
3
)=(10η
1
,一4η
2
,一4η
3
),用初等变换法解得 [*] 则正交矩阵Q=(α
1
,α
2
,α
3
)满足要求.
解析
转载请注明原文地址:https://kaotiyun.com/show/7yS4777K
0
考研数学一
相关试题推荐
设3阶矩阵A的特征值分别为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_______。
曲面z=x2(1一siny)+y2(1一sinx)在点(1,0,1)处的切平面方程为___________.
二阶常系数非齐次线性微分方程y’’一2y’一3y=(2x+1)e-x的特解形式为().
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(一1)f"(x)一xf’(x)=ex一1,则下列说法正确的是
设生产函数为Q=ALαKβ,其巾Q是产出量,L是劳动投入量,K是资本投入量,而A、α、β均为大于零的参数,则Q=1时K关于L的弹性为________.
某化肥厂生产某产品1000吨,每吨定价为130元,销售量在700吨以内时,按原价出售,超过700吨时,超过的部分打九折出售,试将销售总收益与总销售量的函数关系用数学表达式表出.
设随机变量X服从参数为λ的泊松分布,当k取何值时P{X=k}最大。
[2001年]一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50kg,标准差为5kg,若用最大载重量为5t的汽车承运,试利用中心极限定理说明每辆车最多可装多少箱,才能保证不超载的概率大于0.977.(ф(2)=0.977,其中ф(
某商品一周的需求量X是随机变量,已知其概率密度为假设各周的需求量相互独立,以Uk表示k周的总需求量,试求:U2和U3的概率密度fk(x)(k=2,3);
某商场经统计发现顾客对某商品的日需求量X~N(μ,δ2),且日平均需求量μ=40(件),销售在30~50(件)之间的概率为0.5.若进货不足每件损失利润70元.进货过量每件损失100元,求日最优进货量.
随机试题
民事法律行为可以采取()、口头形式或者其他形式。
甲亢术后出现声音嘶哑,饮水无呛咳,可能是由于
特种作业人员不包括()。
下列会计科目中,属于损益类的是()。
下列关于证券承销的表述中,正确的有()。
阿尔德弗尔在马斯洛需要层次论的基础上,于1969年又提出了ERG理论,该理论把人类需要分为()。
下列关于日常生活的说法,不正确的是()。
()拉斯科洞穴原始岩画是现已发现的世界最早的绘画,是早期人类文明的见证。
下列关于日食和月食的判断,正确的是()。
报表页眉的内容只在报表的______打印输出。
最新回复
(
0
)