首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,ηs是非齐次线性方程组Ax=b的s个解,k1,ks为实数,满足k1+k2+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
设η1,ηs是非齐次线性方程组Ax=b的s个解,k1,ks为实数,满足k1+k2+…+ks=1。证明x=k1η1+k2η2+…+ksηs也是方程组的解。
admin
2019-01-19
49
问题
设η
1
,η
s
是非齐次线性方程组Ax=b的s个解,k
1
,k
s
为实数,满足k
1
+k
2
+…+k
s
=1。证明x=k
1
η
1
+k
2
η
2
+…+k
s
η
s
也是方程组的解。
选项
答案
由于η
1
,…,η
s
是非齐次线性方程组Ax=b的s个解,故有Aη
i
=b(i=1,…,s)。 因为k
1
+k
2
+…+k
s
=1,所以 Ax=A(k
1
η
1
+k
2
η
2
+…+k
s
η
s
)=k
1
Aη
1
+k
2
Aη
2
+…+k
s
Aη
s
=b(k
1
+…+k
s
)=b, 由此可见x也是方程组的解。
解析
转载请注明原文地址:https://kaotiyun.com/show/8BP4777K
0
考研数学三
相关试题推荐
求由方程2χz-2χyz+ln(χyz)=0所确定的函数z=z(χ,y)的全微分为_______.
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组系数矩阵A的秩r(A)=2;(2)求a,b的值及方程组的通解.
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Aχ=b恒有解的充分必要条件是r(A)=m.
设有齐次线性方程组Aχ=0和Bχ=0,其中A、B均为m×n矩阵.现有4个命题:【】①若Aχ=0的解均是Bχ=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Aχ=0的解均是Bχ=0的解;③若Aχ=0与B
设X的密度为f(χ)=,-∞<χ<+∞求:(1)常数C和X的分布函数F(χ);(2)P(0≤X≤1)及Y=e-|X|的密度fY(y).
曲线渐近线的条数为
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量,证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆阵.
微分方程y"一y=ex+1的一个特解应具有形式().
某种仪器由三个部件组装而成,假设各部件质量互不影响且它们的优质率分别为0.8,0.7与0.9.已知如果三个部件都是优质品,则组装后的仪器一定合格;如果有一个部件不是优质品,则组装后的仪器不合格率为0.2;如果有两个部件不是优质品,则仪器的不合卡各率为0.6
随机试题
在微型计算机中,微处理器的主要功能是进行()。
患者乘车时,急刹车,右膝前方受到撞击,出现右髋剧痛,髋关节运动障碍,处于屈曲内收、内旋畸形状态。该病人治疗4周后,自行下地负重行走,正常活动,预计可能发生下列哪种情况
婴儿湿疹亚急性期可用
运用市场价值法时,当存在着垄断或价格补贴,应采用( )计算环境影响价值。
商业银行同业拆借得到的资金被禁止用于()。
每一个复杂的生物个体都是由各种不同的细胞构成的系统,其中每个细胞中的DNA都包含了该生物个体所有性状的遗传信息。这段话蕴含的哲理有()。
《房地产开发经营管理条例》规定,房地产开发用地应当以()取得。
下列关于大肠杆菌的培养的叙述中不正确的是()
谨慎,就是重证据,重调查研究,不得草率,防止偏差,实行严格审批制度、监督制度,坚持有错必究。()
某计算机字长为16位,主存地址空间大小为128KB,按字编址。采用单字长指令格式,指令各字段定义如下:转移指令采用相对寻址方式,相对偏移量用补码表示。寻址方式定义如表1-4所示。请回答下列问题:转移指令的目标地址范围是多少?
最新回复
(
0
)