首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:∫0af(χ)dχ+∫0bg(χ)dχ=ab,其中g(χ)是f(χ)的反函数.
设函数f(χ)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:∫0af(χ)dχ+∫0bg(χ)dχ=ab,其中g(χ)是f(χ)的反函数.
admin
2020-03-16
34
问题
设函数f(χ)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:∫
0
a
f(χ)dχ+∫
0
b
g(χ)dχ=ab,其中g(χ)是f(χ)的反函数.
选项
答案
令F(a)=∫
0
a
f(χ)dχ+∫
0
f(a)
g(χ)dχ-af(a),对a求导得 F′(a)=f(a)+g[f(a)]f′(a)-af′(a)-f(a), 由题设g(χ)是f(χ)的反函数知g[f(a)]=a,故F′(a)=0,从而F(a)为常数.又F(0)=0,故F(a)=0,即原等式成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/8I84777K
0
考研数学二
相关试题推荐
求
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2。求方程f(x1,x2,x3)=0的解。
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
已知矩阵相似于对角矩阵Λ.(1)求a的值;(2)利用正交变换将二次型XTBX化为标准形,并写出所用的正交变换;(3)指出曲面XTBX=1表示何种曲面.
设A是任一n(n≥3)阶方阵,A*是其伴随随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=().
[2005年]已知三阶矩阵A的第l行是[a,b,c],a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
[2015年]设D是第一象限中曲线2xy=1,4xy=1与直线y=x,y=√3x围成的平面区域:函数f(x,y)在D上连续,则f(x,y)dxdy=().
设3元实二次型f(x)=xTAx经正交变换x=Cy化成f(x)=y12+y22.是Ax=0的解向量.(1)求所用的正交变换x=Cy;(2)求A;(3)写出该实二次型f(x)的表达式.
设A和B是两个列数相同的矩阵,表示A在上,B在下构造的矩阵.证明≤r(A)+r(B).
行列式|A|非零的充分条件是().
随机试题
戊戌维新时期,维新派在上海创办的《时务报》的主笔人是谁
不符合十二指肠溃疡疼痛特点的叙述是
预应力筋采用镦头锚固时,高强钢丝宜采用()。
纳税人开采或者生产不同税目应税产品的;未分别核算或者不能准确提供不同税目应税产品的销售额或者销售数量的,从高适用税率。()
社会学习说运用()来解释言语的获得。
下列说法不正确的一项是()。
下图是人教版义务教育课程标准实验教科书五年级下册关于“求两个数的最大公因数”的教学内容,请阅读并据此作答后面问题:题图:怎样求18和27的最大公因数?观察一下,两个数的公因数和它们的最大公因数之间有什么关系?找出下列每组数的最大公因数,做完后你发现
牛的可贵之处,即在活着的时候,就不知疲倦地供人役使,死后则把全身献给社会。牛对于人类社会真是“鞠躬尽瘁,死而后已”。这段话支持了这样一种观点()。
以下不合法的VB变量名是
Readthefollowingtextfromadiscussioninwhichfivepersonstalkedabouttheirviewsondieting.Forquestions61to65,mat
最新回复
(
0
)