首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:∫0af(χ)dχ+∫0bg(χ)dχ=ab,其中g(χ)是f(χ)的反函数.
设函数f(χ)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:∫0af(χ)dχ+∫0bg(χ)dχ=ab,其中g(χ)是f(χ)的反函数.
admin
2020-03-16
99
问题
设函数f(χ)在区间[0,a]上单调增加并有连续的导数,且f(0)=0,f(a)=b,求证:∫
0
a
f(χ)dχ+∫
0
b
g(χ)dχ=ab,其中g(χ)是f(χ)的反函数.
选项
答案
令F(a)=∫
0
a
f(χ)dχ+∫
0
f(a)
g(χ)dχ-af(a),对a求导得 F′(a)=f(a)+g[f(a)]f′(a)-af′(a)-f(a), 由题设g(χ)是f(χ)的反函数知g[f(a)]=a,故F′(a)=0,从而F(a)为常数.又F(0)=0,故F(a)=0,即原等式成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/8I84777K
0
考研数学二
相关试题推荐
求极限:
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。证明B可逆;
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2,…+αn.证明方程组AX=b有无穷多个解;
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2。求a的值;
设A是任一n(n≥3)阶方阵,A*是其伴随随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=().
[2005年]设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
[2015年]设D是第一象限中曲线2xy=1,4xy=1与直线y=x,y=√3x围成的平面区域:函数f(x,y)在D上连续,则f(x,y)dxdy=().
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).(1)求L的方程;(2)当L与直线y=ax所围成平面图形的面积为时,确定a的值.
设A是三阶矩阵,且各行元素的和都是5,则矩阵A一定有特征值__________。
随机试题
自控系统中表示打印的单词是()。
关于大肠杆菌DNA-polⅢ的描述,错误的是
A.卫生行政部门B.中国食品药品检定研究院C.CFDA药品审评中心D.工业和信息化管理部门组织制定国家药物政策和国家基本药物制度的政府部门是()。
患者,男性。高处坠落后出现严重呼吸困难、四肢不能活动。查体:颈部压痛,四肢瘫痪,高热,有较重痰鸣音。X线摄片提示:C4~C5骨折,合并脱位。导致其呼吸困难的最主要原因为
()是一种对系统工艺过程或操作过程的创造性分析方法。
专利权不包括( )。
中国历史上第一次公布的成文法是指()。
A、 B、 C、 D、 D本题考查平移和翻转。观察第一组图,五边形沿圆内部每次顺时针旋转90°,且后一幅图中的五边形都由前一幅图中的五边形上下翻转得来。第二组图遵循同样的规律,得到D选项。
Overthepastcentury,allkindsofunfairnessanddiscriminationhavebeencondemnedormadeillegal.Butoneinsidiousformco
A、Theyhavenodreams.B、Theydon’tfeelbeingloved.C、Theygetusedtowhattheyhave.D、Theyonlycherishthematerialthings
最新回复
(
0
)