首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是a1=(-1,-1,1)T,a2=(1,-2,-1)T. (Ⅰ)求A的属于特征值3的特征向量; (Ⅱ)求矩阵A.
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是a1=(-1,-1,1)T,a2=(1,-2,-1)T. (Ⅰ)求A的属于特征值3的特征向量; (Ⅱ)求矩阵A.
admin
2013-09-03
68
问题
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是a
1
=(-1,-1,1)
T
,a
2
=(1,-2,-1)
T
.
(Ⅰ)求A的属于特征值3的特征向量;
(Ⅱ)求矩阵A.
选项
答案
(Ⅰ)由题设,实对称矩阵A的三个特征值不同,则相应的特征向量彼此正交,设A的属于特征值3的特征向量为a
3
=(x
1
,x
2
,x
3
)
T
,则a
1
T
a
3
=0且a
2
T
a
3
=0, 写成线性方程组的形式为[*],可解得[*],其中C为任意 非零常数,所以A的属于特征值3的特征向量为a
3
=C(1,0,1)
T
. (Ⅱ)由于实对称阵必可对角化,即存在可逆矩阵P,使P
-1
AP=[*] 且由前述可令P=[*],因此A=P[*] 先求出P
-1
=[*] 则A=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Xx54777K
0
考研数学一
相关试题推荐
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y21+y22-y23,其中P=(e1,e2,e3),若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为()
设向量组α1,α2,α3为3维向量空间R3的一个基,令β1=2α1+2kα3,β2=2α2,β3=2α1+(k+1)α3.当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求出所有的ξ.
设A为m×n矩阵,证明:方程Ax=Em有解的充分必要条件是R(A)=m.
设(ai2+bi2≠0,i=1,2,3),证明三直线相交于一点的充分必要条件:向量组a,b线性无关,且向量组a,b,c线性相关.
设对于半空间x>0内的任意光滑有向封闭曲面∑,都有其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x)
已知极限,试确定常数n和c的值.
求直线绕z轴旋转而成的旋转曲面方程,并问a、b不同时为零时,该曲面为何种曲面?
将下列曲线化为参数方程:
设a1>1,又an+1=1+1na.(Ⅰ)证明:方程x=1+1nx有唯一解,并求其解;(Ⅱ)存在,并求此极限.
随机试题
根据公路工程陆上作业安全技术要求,对机械车辆在危险地段作业时的要求错误的是()。
马克思主义关于________是我国社会主义教育目的的理论基础。
患者,男性,四肢屈侧皮肤丘疹,鳞屑,偶见少量水小疱及轻度糜烂,可见结痂,剧烈瘙痒,对称分布,其诊断为
甲公司委托乙公司研制一种新产品,但乙公司研制成功后被丙窃取,丙将该技术高价卖给丁公司,丁公司迅速占领了该产品的大部分市场份额。在此情况下,甲公司可以向乙公司主张( )。
我国社会保障基金的资金来源包括()。
某公司资产总额为5600万元,负债总额2800万元,其中,本期到期的长期债务和应付票据为2000万元,流动负债800万元,股东权益中股本总额为1600万元,全部为普通股,每股面值1元,每股现行市价5元。当年实现净利润1000万元,留存盈利比率为60%,股利
Johnsononlyrememberedthatitwas______SundaywhenhefirstmetMarybecauseeverybodywasat______church.
网络在给我们带来大量有益信息的同时,也带来了许多毫无价值的、甚至是一些有悖于社会道德规范的东西。这说明()
设函数f(x)=f(x)在(一∞,+∞)上连续,则A=_________.
A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT=E且B的行向量是齐次方程组AX=0的解,P是M阶可逆矩阵,证明:矩阵pb的行向量是Ax=0的基础解系.
最新回复
(
0
)