首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2016年] 设D是由曲线y=(0≤x≤1)与围成的平面区域,求D绕x轴旋转一周所得旋转体的体积和表面积.
[2016年] 设D是由曲线y=(0≤x≤1)与围成的平面区域,求D绕x轴旋转一周所得旋转体的体积和表面积.
admin
2019-04-05
76
问题
[2016年] 设D是由曲线y=
(0≤x≤1)与
围成的平面区域,求D绕x轴旋转一周所得旋转体的体积和表面积.
选项
答案
旋转体的体积可按式(1.3.5.4)求之,表面积可按式(1.3.5.2)求之.[*] (I)设D的图形为图1.3.5.9所示,D绕x轴旋转一周所得旋转体的体积可看为两个旋转体体积之差.先将曲线的参数方程化为直角坐标方程: 令x=cos
3
t,y=sin
3
t,则x=0,1时,t=[*],0. x
2/3
=(cos
3
t)
2/3
=cos
2
t,l一x
2/3
=l—cos
2
t=sin
2
t=(sin
3
t)
2/3
=y
2/3
, 故y=(1一x
2/3
)
3/2
其略图如图1.3.5.9所示,则 则V
x
=π∫
0
1
([*])
2
dx—π∫
0
1
y
2
dx=π∫
0
1
(1一x
2
)dx—π∫
π/2
0
sin
6
tdcos
3
t =[*]-π∫
π/2
0
sin
6
t·3cos
2
t(一sint)dt=[*]一3π∫
0
π/2
sin
7
t(1一sin
2
t)dt =[*]-3π∫
0
π/2
sin
7
tdt+3π∫
0
π/2
sin
9
tdt =[*] (Ⅱ)由式(1.3.5.2)得到 S
1
=∫
0
1
2π.y[*]dx=2π∫
0
1
[*]=2π. 由y=(1一x
2/3
)
3/2
得到 (y′)
2
=[*]=1. 于是[*],则 S
2
=2π∫
0
1
y[*]dt=2π∫
0
1
(1一x
2/3
)
3/2
·x
1/3
dx =2π∫
π/2
0
sin
3
t cos
-1
t·3 cos
2
t(—sint)dt =6π∫
0
π/2
sin
4
tcostdt=6π∫
0
π/2
sin
4
tdsint =6π[*] 故D绕x轴旋转一周所得的表面积为S=S
1
+S
2
=2π+[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/8WV4777K
0
考研数学二
相关试题推荐
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在ξ∈(0,3),使f’’(ξ)=0。
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2),常数λ>0.
交换累次积分I的积分次序:
解下列微分方程:(Ⅰ)y"-7y’+12y=x满足初始条件的特解;(Ⅱ)y"+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)y"’+y"+y’+y=0的通解.
设试判别函数在原点(0,0)处,是否可偏导?偏导数是否连续?是否可微?
设两曲线y=(a>0)与y=在(x0,y0)处有公切线(如图3.13),求这两曲线与x轴围成的平面图形绕x轴旋转而成的旋转体的体积V.
设f(x)是以T为周期的连续函数,且F(x)=f(t)dt+bx也是以T为周期的连续函数,则b=________
设连续函数f(χ)满足∫0χtf(χ-t)dt-1-cosχ,求f(χ)dχ.
[2012年]设an>0(n=1,2,3,…),Sn=a1+a2+a3+…+an,则数列{Sn}有界是数列{an}收敛的().
随机试题
A.甲氧苄啶(TMP)B.环丙沙星C.萘啶酸D.呋喃唑酮E.四环素可治疗支原体、衣原体肺炎的药物是
百部杀虫的功效,可用于
凉膈散的组成中含有的是( )。
已确认的政府补助需要返还的,下列情况正确的处理方法是()。
试论述经济与高等教育的关系。
根据《中华人民共和国刑法修正案(九)》,下列说法错误的是()。
从20世纪90年代“人类基因工程”计划启动之日起,美国、日本和欧洲等展开了一场激烈的基因专利争夺战。因为谁拥有专利,就意味着谁就能在国际上获得_______基因产业的“王牌”,谁就能拥有今后基因开发的庞大市场。为此,美国等少数发达国家大量地将阶段性研究成果
[*]
设z=z(z,y)由z+ez=xy2确定,则dz=________.
Thelargestanimalthateverlivedonlandorinwaterstillexists.Noteventhegiantdinosaurswereaslargeassomewhales.
最新回复
(
0
)