首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),已知Ax=β的通解为 其中为对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,令B=(α1,α2,α3),试求 By=β的通解.
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),已知Ax=β的通解为 其中为对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,令B=(α1,α2,α3),试求 By=β的通解.
admin
2021-02-25
85
问题
设α
1
,α
2
,α
3
,α
4
,β为4维列向量,A=(α
1
,α
2
,α
3
,α
4
),已知Ax=β的通解为
其中
为对应的齐次线性方程组Ax=0的基础解系,k
1
,k
2
为任意常数,令B=(α
1
,α
2
,α
3
),试求
By=β的通解.
选项
答案
由题设知r(A)=2,且α
1
-α
2
+2α
3
+α
4
=β,α
1
+2α
2
+0α
3
+α
4
=0,-α
1
+α
2
+α
3
+0α
4
=0,于是有α
1
-α
2
=α
3
,-α
1
-2α
2
=α
4
,2α
1
-5α
2
+0α
3
=β,可见α
1
,α
2
线性无关,于是r(B)=2,且(2,-5,0)
T
为By=β的特解,又由-α
1
+α
2
+α
3
=0,知(1,-1,-1)
T
为By=0的非零解,可作为基础解系,故By=β的通解为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/8a84777K
0
考研数学二
相关试题推荐
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ线性无关。
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设函数f(t)在[0,+∞)上连续,且满足方程f(t)=.试求f(t).
已知矩阵A与B相似,其中。求a,b的值及矩阵P,使P—1AP=B。
设f(χ)为连续正值函数,χ∈[0,+∞),若平面区域Rt={(χ,y)}0≤χ≤t,0≤y<f(χ)}(t>0)的形心纵坐标等于曲线y=f(χ)在[0,t]上对应的曲边梯形面积与之和,求f(χ).
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c是唯一的.
设A为n阶可逆矩阵,A*为A的伴随矩阵,证明:(A*)T=(AT)*。
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设A是3阶矩阵,特征值为1,一1,一2,则下列矩阵中可逆的是
随机试题
选中要删除的文件或文件夹,应按()
A.睡眠露睛B.瞳仁散大C.瞳仁缩小D.眼眶凹陷肝胆火炽,可见
最常见的腹外疝是
"牡痔"是指:"牝痔"是指:
肛瘘手术治疗中,最重要的是
200×年×月×日凌晨3时许,某县龙泉矿冶总厂下属的某矿发生特大透水事故,造成某矿等三矿井下81名矿工死亡,直接经济损失8千余万元。经调查,这是一起因某县大厂矿区在政府有关部门明令停产整顿期间,擅自组织矿工冒险下矿作业,非法开采、以采代挖、滥采滥挖,矿业
下列风险中,属于承包商责任风险的是( )。
下列领域中,属于公共财政应当发挥职能作用的有()。
学习并掌握马克思主义哲学()。
根据现行《宪法》规定,关于公民权利和自由,下列选项表述正确的是()。
最新回复
(
0
)