首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
微分方程y″—4y′=2cos22x的特解可设为
微分方程y″—4y′=2cos22x的特解可设为
admin
2020-07-03
62
问题
微分方程y″—4y′=2cos
2
2x的特解可设为
选项
A、Ax+B
1
cos4x+B
2
sin4x
B、A+B
1
cos4x+B
2
sin4x
C、B
1
cos
2
2x+B
2
sin
2
2x
D、B
1
cos4x+B
2
sin4x
答案
A
解析
方程右端的非齐次项
f(x)=2cos
2
2x=1+cos4x,
相应齐次方程的特征方程是
λ
2
—4λ=0.
特征根λ
1
=0,λ
2
=4.
利用解的叠加原理:相应于非齐次项f
1
(x)=1,有形式为y
1
*
(x)=Ax(λ
1
=0为单特征根)的特解,A为待定常数;相应于非齐次项f
2
(x)=cos4x,有形式为y
2
*
(x)=B
1
cos4x+B
2
sin4x的特解,B
1
,B
2
为待定常数.因此,原方程的特解可设为
Ax+B
1
cos4x+B
2
sin4x.
故应选A.
转载请注明原文地址:https://kaotiyun.com/show/8h84777K
0
考研数学二
相关试题推荐
设,且f(x)~f*(x),g(x)~g*(x)(x→a).(Ⅰ)当x→a时f(x)与g(x)可比较,不等价,求证:f(x)-g(x)~f*(x)-g*(x)(x→a);(Ⅱ)当0<|x-a|<δ时f(x)与f*(x)均为正值,求证:(其中一端
设f(χ)二阶可导,f(0)=0,令g(χ)=(1)求g′(χ);(2)讨论g′(χ)在χ=0处的连续性.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为.①求A.②证明A+E是正定矩阵.
若连续函数满足关系式则f(x)=()
设A是三阶矩阵,A*是A的伴随矩阵,已知A的每行元素之和为k,A*的每行元素之间和为m,则|A|=()
若二阶常系数齐次线性微分方程y"+py’+qy=0的一个特解为y=2excosx,则微分方程y"+py’+qy=exsinx的特解形式为().
某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下,现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k=6.
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数ψ(x)与kx之和,并求出此常数k;(2)求(1)中的(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求
已知平面上三条直线的方程为l1:ax+2by+3c=0,l2:bx+2cy+3a=0.l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
有一单位球,球内各点处到该球外一定点(0,0,a),(a>1)的距离成反比,求此球的质心.
随机试题
呼吸系统患病的常见部位,且不易早期诊断和发现的是
下列有关中性粒细胞的免疫活性的叙述中,哪一项是错误的
下列哪项不属于霍乱弧菌的致病物质()
应专门监护的加强子宫收缩的措施是
人民法院判决被告重新作出具体行政行为的,被告( )。
某施工单位承接了一个标段的二级公路工程施工任务。项目中有大量小型预制构件需要预制,施工单位决定就近选择场地布置预制场。在预制场建设准备和预制施工中有如下事件发生:事件1:考虑到路线较长,项目部决定对路基排水工程的水沟盖板、防护工程的各型预制块、隧
净利润是由( )等因素所构成。
Asregardssocialconventions,wemustsayawordaboutthewell-knownEnglishclasssystem.Thisisanembarrassingsubjectfor
STP的拓扑变化通知BPDU的长度不超过()。
Therestaurantfeaturesawide-openkitchensurroundedbywoodencountersonthreesides,whereabrigadeofassiduouschefswit
最新回复
(
0
)