首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T. 求A.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T. 求A.
admin
2021-11-25
29
问题
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ
1
=2是A的特征值,对应特征向量为(-1,0,1)
T
.
求A.
选项
答案
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/8iy4777K
0
考研数学二
相关试题推荐
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解。
设齐次线性方程组其中ab≠0,n≥2,讨论a,b取何值时,方程组只有零解,有无穷多个解?在有无穷多个解时,求出其通解。
设向量组a1,a2,...,an-1为n维线性无关的列向量组,且与非零向量Β1,Β2正交。证明:Β1,Β2线性相关。
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4
设A是正交矩阵,且|A|<0,证明:|E+A|=0.
设D=,则A31+A32+A33=_________.
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。证明:至少存在一个非零向量可同时由a1,a2与Β1,Β2线性表示。
设的一个特征值为λ1=2,其对应的特征向量为ξ1=.判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵,若不可对角化,说明理由。
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量a,Β,使得A=aΒT.
设a,Β是n维非零列向量,A=aΒT+ΒaT.证明:r(A)≤2.
随机试题
“液膜控制”吸收过程的条件是()。
带蒂皮瓣移植术适用于下列哪种类型的手外伤
A、心室率不规整B、出现f波C、PR间期逐渐延长,QRS波周期性脱落D、刺激迷走神经后心室率明显加快伴心律不齐E、出现F波提示二度I型房室传导阻滞的心电图表现是
患者,男,89岁。因腹部隐痛来院就诊。门诊以腹痛待查收入院。患者身高160cm,体重40kg,意识清楚,生活基本不能自理。护士在晨间为其进行口腔护理时发现患者口腔黏膜充血糜烂,舌苔增厚,有假膜。此时护士应()。
根据一个法律行为是否以给付原因为要件可以分为()。
()伏以上的电压为高压。
因海关检查造成的货损及发生费用由()承担。
教学实施,是指在课堂教学中具体实施事前准备好的课堂教学方案。以下说法正确的是()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
人们说话时,常把/mama/发成/ma/,这是语音的()现象。
最新回复
(
0
)