首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知(X,Y)服从二维正态分布N(0,0;σ2,σ2;ρ),则随机变量X+Y与X-Y,必( )
已知(X,Y)服从二维正态分布N(0,0;σ2,σ2;ρ),则随机变量X+Y与X-Y,必( )
admin
2019-12-24
63
问题
已知(X,Y)服从二维正态分布N(0,0;σ
2
,σ
2
;ρ),则随机变量X+Y与X-Y,必( )
选项
A、相互独立且同分布。
B、相互独立但不同分布。
C、不相互独立但同分布。
D、不相互独立也不同分布。
答案
B
解析
因为(X,Y)服从二维正态分布N(0,0;σ
2
,σ
2
;ρ),所以它们的线性组合也是正态分布,即X+Y~N(0,2σ
2
+2ρσ
2
),X-Y~N(0,2σ
2
-2ρσ
2
),故分布不同。
而Cov(X+Y,X-Y)=0,则X+Y,X-Y不相关,因为(X+Y,X-Y)仍是二维正态分布,所以不相关与独立等价。
如果已知两个随机变量的协方差,则两个随机变量和的方差公式为D(X+Y)=D(X)+D(Y)+2Cov(X,Y),
其中Cov(X,Y)=
。
转载请注明原文地址:https://kaotiyun.com/show/8mD4777K
0
考研数学三
相关试题推荐
设f(x)在x=0处连续,且=2,则曲线y=f(x)在点(0,f(0))处的切线方程为_________________________。
一条自动生产线连续生产n件产品不出故障的概率为n=0,1,2,….假设产品的优质品率为p(0<p<1).如果各件产品是否为优质品相互独立.(I)计算生产线在两次故障间共生产k件(k=0,1,2,…)优质品的概率;(Ⅱ)若已知在某两次故障间该生产线生产了
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2.(1)求A的特征值.(2)当实数k满足什么条件时A+kE正定?
a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12一3y22+5y32?
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(x1,x2,…,xn)=(1)用矩阵乘积的形式写出此二次型.(2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?
A=.则()中矩阵在实数域上与A合同.
设某地段在一个月内发生交通事故的次数X服从泊松分布,其中重大事故所占比例为α(0<α<1).据统计资料,该地段在一个月内发生8次交通事故是发生10次交通事故概率的2.5倍,求该地段在一年内最多有一个月发生重大交通事故的概率(假定各月发生交通事故情况互不影响
(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n一3,证明η1,η2,η3为AX=0的一个基础解系.
证明:曲率恒为常数的曲线是圆或直线.
随机试题
背景某公司承接一座钢筋混凝土框架结构的办公楼,内外墙及框架间墙采用GZL保温砌块砌筑。目标成本为305210.50元,实际成本为333560.40元,比目标成本超支了28349.90元,用因素分析法分析砌筑量、单价、损耗率等因素的变动对实际成本的影响程度
【】通常跨接很大的物理范围,如一个或几个国家。
龙眼与伞迟子建①大兴安岭的春雪,比冬天的雪要姿容灿烂。雪花仿佛沾染了春意,朵大,疏朗。它们洋洋洒洒地飞舞在天地间,犹如畅饮了琼浆,轻盈,娇媚。②我
疟疾病因性预防的首选药为()
痹证初起的主要症状不包括
某房屋建设工程施工中,模板支撑体系坍塌,导致1人死亡,11人重伤,直接经济损失2000万元,根据《关于做好房屋建筑和市政基础设施工程质量事故报告和调查处理工作的通知》(建质[2010]111号),该事故等级为()。
整体来看,我国银行业金融机构在对贷款合同管理中尚存的问题有()
苏轼认为,贾谊才学虽高,但不能审时度势,以致郁郁而死,未尽其才。他还说:“贾生志大而量小,才有余而识不足也。”从贾谊的际遇看,苏轼说的是实情;但是,导致贾谊悲剧的原因主要是当朝统治者的错误。下列陈述,不符合文意的是()。
左边给定的是纸盒外表面的展开图,右边哪一项能由它折叠而成?请把它找出来。
维生素对于人的生命非常重要,而且不同的群体对于不同维生素的需求是不同的,下列哪项说法是不正确的?()
最新回复
(
0
)