首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0. 求(A-3E)6.
已知A是3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0. 求(A-3E)6.
admin
2021-02-25
78
问题
已知A是3阶实对称矩阵,α
1
=(1,-1,-1)
T
,α
2
=(-2,1,0)
T
是齐次线性方程组Ax=0的解,又(A-6E)α=0,α≠0.
求(A-3E)
6
.
选项
答案
因为[*] 于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ol84777K
0
考研数学二
相关试题推荐
已知齐次线性方程组问a,b为何值时,方程组(I)与(Ⅱ)有非零公共解?并求出全部非零公共解.
设D={(x,y)|x2+y2≤x),求
设(2E一CB)A=C,其中A是3阶方阵A的转置矩阵,且.
确定常数a,b,c的值,使=4.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
设有方程y”+(4x+e2y)(y’)3=0.(1)将方程转化为x为因变量,y作为自变量的方程;(2)求上述方程的通解.
(1)设y=f(χ,t),其中t是由G(χ,y,t)=0确定的χ,y的函数,且f(χ,t),G(χ,y,t)一阶连续可偏导,求(2)设z=z(χ,y)由方程z+lnz-=1确定,求
设χy=χf(χ)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是z,y的函数.证明:[z-g(z)]=[y-f(z)].
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续,②f(x,y)在点(x0,y0)处的两个偏导数连续,③f(x,y)在点(x0,y0)处可微,④f(x,y)在点(x0,y0)处的两个偏导数存在.则有()
随机试题
对周期性麻痹叙述不正确的是
阳虚水泛型肺胀的治则是痰热郁肺型肺胀的治则是
依据《中华人民共和国循环经济促进法》,电力、石油加工等企业,必须在国家规定的范围和期限内,以洁净煤、石油焦、天然气等清洁能源替代燃料油,停止使用不符合国家规定的()。
2011年7月20日,某工业园区当值安全员李某巡逻时,突然发现2号宿舍楼302员工宿舍有浓烟从窗户向外冒出,其意识到302室已发生火警(注:宿舍所属单位员工都在上班),李某即刻用对讲机通知巡逻岗,同时快速冲向宿舍提取灭火器赶赴事发现场。巡逻岗在得到火警信息
税种认定涉及国税、地税两套税务机构的纳税人,税务代理税种认定,下列做法不合适的有( )。
个人住房贷款的信用风险通常是因借款人的()和()下降导致的。
下列选项中,不能设立临时性行政许可的规范是()。
原计划在雕塑周围用若干盆花围成一个4层的空心方阵,但为了整体美观,最后决定将花盆排成2层。4层空心方阵与2层空心方阵相比,最外一层每边少8盆,那么一共有多少盆花?()
提高效度的方法有哪些?【河北师范大学2013;曲阜师范大学2011】
Ateacherwhoisskillfulindeliveringhislecturecanundoubtedly______themindofstudents.
最新回复
(
0
)