首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (2)设α1=,求出可由两组向量同时线性表示的向量.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关. (1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示; (2)设α1=,求出可由两组向量同时线性表示的向量.
admin
2019-05-14
57
问题
设α
1
,α
2
,β
1
,β
2
为三维列向量组,且α
1
,α
2
与β
1
,β
2
都线性无关.
(1)证明:至少存在一个非零向量可同时由α
1
,α
2
和β
1
,β
2
线性表示;
(2)设α
1
=
,求出可由两组向量同时线性表示的向量.
选项
答案
(1)因为α
1
,α
2
,β
1
,β
2
线性相关,所以存在不全为零的常数k
1
,k
2
,l
1
,l
2
,使得 k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0,或k
1
α
1
+k
2
α
2
=—l
1
β
1
—l
2
β
2
. 令γ=k
1
α
1
+k
2
α
2
=—l
1
β
1
—l
2
β
2
,因为α
1
,α
2
与β
1
,β
2
都线性无关,所以k
1
,k
2
及l
1
,l
2
都 不全为零,所以γ≠0. (2)令k
1
α
1
+k
2
α
2
+l
1
β
1
+l
2
β
2
=0, [*] 所以γ=kα
1
—3kα
2
=一kβ
1
+0β
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/8q04777K
0
考研数学一
相关试题推荐
设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量;(2)求D().
设f(x)连续可导,导数不为0,且f(x)存在反函数f-1(x),又F(x)是f(x)的一个原函数,则不定积分∫f-1(x)dx=___________。
如图3一15所示,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是()
函数y=f(x)在(0,+∞)内有界且可导,则()
设f(x)在[0,1]上连续,f(0)=0,∫01f(x)dx=0。证明:存在一点ξ∈(0,1),使得∫0ξf(x)dx=ξf(ξ)。
设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(t,1)2xydx+Q(x,y)dy,求Q(x,y)。
设随机变量X服从二项分布B(n,p),随机变量Y为求:(Ⅰ)Y的概率分布;(Ⅱ)Y的期望EY与方差DY.
确定常数a和b>0的值,使函数f(χ)=,在(-∞,+∞)上连续.
求曲面z=1+χ2+y2上任一点(χ0,y0,z0)的切平面与z=χ2+y2所围成立体Ω的体积,以及当(χ0,y0,z0)=(0,0,1)时Ω的表面积.
计算下列n阶行列式:(其中未写出的元素均为0)
随机试题
目前在WTO存在的单独关税区有()
Thisbirdisreallylovely,andI’veneverseen________one.
下列选项中不属于捕食的一项是()
土石坝施工中,当黏性土料含水量偏低时,主要应在()加水。
路基填土不得使用()等。
上个世纪60年代初以来,新加坡的人均预期寿命不断上升,到本世纪已超过日本,成为世界之最。与此同时,和一切发达国家一样,由于饮食中的高脂肪含量,新加坡人的心血管疾病发病率也逐年上升。从上述判定,最可能推出以下哪项结论?()
疼:哭
关于SDR,下列说法正确的是()。[南京大学2012金融硕士]
在"用户表"中有4个字段:用户名(文本型,主关键字),密码(文本型),登录次数(数字型),最近登录时间(日期/时间型)。在"登录界面"的窗体中有两个名为tUser和tPassword的文本框,一个登录按钮 Command0。进入登录界面后,用户输入用户名和
Somepeople’searsproducewaxlikebusylittlebees.Thiscanbeaproblemeventhoughearwax(耳垢)appearsto【S1】______animporta
最新回复
(
0
)