首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知a是常数,且矩阵A=可经初等列变换化为矩阵B=。 求满足AP=B的可逆矩阵P.
已知a是常数,且矩阵A=可经初等列变换化为矩阵B=。 求满足AP=B的可逆矩阵P.
admin
2018-08-03
61
问题
已知a是常数,且矩阵A=
可经初等列变换化为矩阵B=
。
求满足AP=B的可逆矩阵P.
选项
答案
由(1)已知a=2,对矩阵(A B)作初等行变换: [*] 设矩阵B按列分块为B=(β
1
,β
2
,β
3
),则由上面的阶梯形矩阵知: 方程组Ax=β
1
的通解为x=[*],k
1
为任意常数; 方程组Ax=β
2
的通解为x=[*],k
2
为任意常数; 方程组Ax=β
3
的通解为x=[*],k
3
为任意常数. 所以矩阵方程AX=B的解为 [*] 由于行列式|X|=k
3
一k
2
,所以当k
3
≠k
2
时矩阵X可逆,故所求的矩阵P=X(k
3
≠k
2
).
解析
转载请注明原文地址:https://kaotiyun.com/show/8ug4777K
0
考研数学一
相关试题推荐
设一次试验成功的概率为p,进行100次独立重复试验,当P=___________时,成功次数的标准差最大,其最大值为___________.
证明:
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(I)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0→A(β1,β2,…,βn)=O→ABT=O→BAT=O.→α1,α2,…,αn为BY=O的一组解,而
a,b取何值时,方程组有解?
设向量组α1,α2,…,αn—1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
设P(x,y,z),Q(x,y,z),R(x,y,z)在区域Ω连续,Г:x=x(t),y=y(t),z=z(t)是Ω中一条光滑曲线,起点A,终点B分别对应参数tA与tB,又设在Ω上存在函数u(x,y,z),使得du=Pdx+Qdy+Rdz(称为Pdx
已知正态总体X~N(a,相互独立,其中4个分布参数都未知.设X1,X2,…,Xm和Y1,Y2,…,Yn是分别来自X和Y的简单随机样本,样本均值分别为样本方差相应为,则检验假设H0:a≤b使用t检验的前提条件是
随机试题
阅读下面两段文章,回答问题。甲屈原既放,游于江潭,行吟泽畔,颜色憔悴,形容枯槁。渔父见而问之日:“子非三闾大夫与?何故至于斯?”屈原日:“举世皆浊我独清,众人皆醉我独醒,
资本主义社会,资本家要进行资本积累,最主要是进行()。
业主大会的一项重要职责是()。
大力加强党的作风建设是加强党的建设的一项重大战略任务,对于进一步提高党的领导水平和执政水平,不断增强党的创造力、凝聚力和战斗力,具有十分重要的意义。加强党的作风建设必须把()放在第一位。
在行为的内因与外因中,一部分是可变的,另一部分是稳定的。在人的内因中易变的因素是()
我国《刑法》第264条规定:“盗窃公私财物,数额较大的,或者多次盗窃、入户盗窃、携带凶器盗窃、扒窃的,处三年以下有期徒刑、拘役或者管制,并处或者单处罚金;数额巨大或者有其他严重情节的,处三年以上十年以下有期徒刑,并处罚金;数额特别巨大或者有其他特别严重情节
A、Manyanimalsandplantswoulddiebecausetheycannotsurvivethechangingenvironment.B、Manyanimalswouldbeslaughtered,s
Nearlyhalftheworld’spopulationwillexperience【C1】______watershortagesby2025,【C2】______theUnitedNations.Wars【C3】_____
Severaldaysago,aBeijing-basedITcompanyfiredabout【B1】______peopleovernight.Noonehadexpectedthejobcuts,whichbro
假定你是李明,在网上看到人民医院的招聘启事,对此工作很感兴趣,现在给人力资源部的张先生写一封自荐信。日期:6月12日内容主要包括:1.毕业于临床医学专业,非常热爱医生这一职业;2.有丰富的社会实践经验,善于与病人沟通;3.希望能得到面试的机会
最新回复
(
0
)