首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一个正四面体的四个面上分别标有数字1,2,3,4.连续抛掷两次,以底面上数字作为掷出的数字,记X,Y分别表示两次掷出数字的最大值与最小值.计算X+Y与X-Y的协方差矩阵的逆矩阵.
一个正四面体的四个面上分别标有数字1,2,3,4.连续抛掷两次,以底面上数字作为掷出的数字,记X,Y分别表示两次掷出数字的最大值与最小值.计算X+Y与X-Y的协方差矩阵的逆矩阵.
admin
2018-06-12
134
问题
一个正四面体的四个面上分别标有数字1,2,3,4.连续抛掷两次,以底面上数字作为掷出的数字,记X,Y分别表示两次掷出数字的最大值与最小值.计算X+Y与X-Y的协方差矩阵
的逆矩阵.
选项
答案
(X,Y)是二维离散型随机变量,其联合概率分布及关于X,Y的边缘分布如下表: [*] 根据上表,得 [*] cov(X,Y)=EXY-EXEY=[*]. 应用随机变量函数协方差的公式 cov(aX+bY,cX+dY)=acDX+(ad+bc)cov(X,Y)+bdDY, 可以计算出X+Y与X-Y的方差与协方差. D(X+Y)=cov(X+Y,X+Y)=DX+2cov(X,Y)+DY=[*], D(X-Y)=DX-2cov(X,Y)+DY=[*], cov(X+Y,X-Y)=DX-DY=0. 因此X+Y与X-Y的协方差矩阵是二阶对角阵[*],其逆矩阵为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/9Fg4777K
0
考研数学一
相关试题推荐
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵.(1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量:(2)求矩
已知平面上三条不同直线的方程分别为l1=aχ+2by+3c=0,l2=bχ+2cy+3a=0,l3=cχ+2ay+3b=0,试证这三条直线交于一点的充分必要条件为a+b+c=0.
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求方程Aχ=b的通解.
已知齐次线性方程组有通解k1(2,-1,0,1)T+k2(3,2,1,0)T,则方程组的通解是_______.
商店出售10台洗衣机,其中恰有3台次品.现已售出一台洗衣机,在余下的洗衣机中任取两台发现均为正品,则原先售出的一台是次品的概率为
在区间(-1,1)上任意投一质点,以X表示该质点的坐标.设该质点落在(-1,1)中任意小区间内的概率与这个小区间的长度成正比,则
设X1,X2,…,Xn是取自总体X的一个简单随机样本,X的概率密度为f(χ;θ)=(Ⅰ)求未知参数θ的矩估计量;(Ⅰ)若样本容量n=400,置信度为0.95,
设f(χ)在(-∞,+∞)内二阶可导且f〞(χ)>0,则χ>0,h1>0,h2>0,有
曲线的渐近线有()
设总体X一N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量(Ⅰ)验证的无偏性;(Ⅱ)求方差并比较其大小.
随机试题
关于扩张型心肌病的非药物治疗措施,不正确的是
中法战争中,率领清军和民众取得镇南关(今友谊关)大捷的爱国将领是
男性患者,62岁,2d前出现右上腹阵发性绞痛,伴皮肤黄染。6个月前曾行B超检查示:胆囊结石。该患者的诊断最可能是
患儿,男,6岁。发热3天,体温38.5℃左右,伴头痛、肌痛,左耳垂下肿大、疼痛,张Ells于疼痛加重。血常规检查WBC4×109/L,淋巴细胞0.7,约3周前曾探望有相同症状的表哥。对本患儿需注意下列哪些并发症
硫酸亚铁用于治疗
小儿___________能伸手取物,扶腋下能站得直。
“对公有企业和非公企业应该一视同仁”,李克强总理的这一句话要求我们更加公平地对待和认识各种所有制经济。对我国现阶段各种所有制经济的正确认识是()。①国家鼓励和引导民间投资发展混合所有制经济②非公有制经济不是我国经济社会发展的重要基础③公有制经济与
“农餐对接”模式使餐饮企业与农业生产紧密联系起来,餐饮企业安全生产标准管理体系自然延伸到田间地头,直接参与农产品生产过程的安全监控和标准管理,从而在整条供应链上确保农产品质量安全。同时,全程冷链管理和直达配送,避免了原材料在运输或在存储过程中的二次污染,实
结合材料,回答问题:材料1日本奉行大陆政策,有悖于正常的国际关系准则,理不直、气不壮,需要披上一件虚伪的外衣以掩人耳目,渲染“中国威胁论”就是其主要手段。1882年,山县有朋提出,日本不存在欧洲国家入侵的可能性,中国才是日本的“外患”。
Sciencemovesforward,theysay,notsomuchthroughtheinsightsofgreatmenofgeniusasbecauseofmoreordinarythingslike
最新回复
(
0
)