首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是线性方程组Ax=0的一个基础解系,若向量组β1=2α2-α3,β2=α1-α2+α3,β3=α1+tα2同为该方程组的一个基础解系,则t________.
已知α1,α2,α3是线性方程组Ax=0的一个基础解系,若向量组β1=2α2-α3,β2=α1-α2+α3,β3=α1+tα2同为该方程组的一个基础解系,则t________.
admin
2021-07-27
62
问题
已知α
1
,α
2
,α
3
是线性方程组Ax=0的一个基础解系,若向量组β
1
=2α
2
-α
3
,β
2
=α
1
-α
2
+α
3
,β
3
=α
1
+tα
2
同为该方程组的一个基础解系,则t________.
选项
答案
≠1
解析
若β
1
,β
2
,β
3
是方程组Ax=0的一个基础解系,其充要条件是与基础解系α
1
,α
2
,α
3
等价,由题设,
知β
1
,β
2
,β
3
与基础解系α
1
,α
2
,α
3
等价的充要条件是
因此,得t≠1.
转载请注明原文地址:https://kaotiyun.com/show/9Hy4777K
0
考研数学二
相关试题推荐
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
已知线性方程组(1)a,b,c满足何种关系时,方程组仅有零解?(2)a,b,c满足何种关系时,方程组有无穷多组解?并用基础解系表示全部解.
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明:(1)存在ξ∈(0,1),使得f′(ξ)=1;(2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
已知β可用α1,α2,α3线性表示,但不可用α1,α2,α3线性表示.证明(1)αa不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
设A为三阶矩阵,,则|4A一(3A*)—1|=()
设矩阵A与B相似,且(1)求a,b的值.(2)求可逆矩阵P,使P-1AP=B.
微分方程y"+2y’+2y=e一xsinx的特解形式为()
确定常数a,b,c的值,使得当χ→0时,eχ(1+bχ+cχ2)=1+aχ+o(χ3).
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
用待定系数法求微分方程y″一y=xex的一个特解时,特解的形式是()(式中a,b为常数).
随机试题
作为一种调查研究的类型,发展研究一般要解决的问题是()
关于罪刑法定原则与刑法解释的关系,下列哪些选项表述不正确?()
某二级公路,建设单位按有关规定在国内媒体上发布了招标公告。其出售的招标文件分三卷,包括投标人须知、合同通用条款、技术规范和工程量清单等.现有甲、乙两家施工企业成立了联合体参与该工程投标,其中甲为联合体主办人。经过正常投标程序,最终该联合体中标。由于工期紧
案卷封面标注的保管期限分为永久、长期、短期三种期限。永久是指工程档案需永久保存。长期是指工程档案的保存期限等于该工程的使用寿命。短期是指工程档案保存( )年以下。
下列属于教育法律关系主体的是()。
下列哪一个不是现代企业制度的特征:
1,3,5,11,21,()。
日前,广电总局向央视下发通知,在主持人口播、记者采访和字幕中,不能再使用诸如NBA、GDP等外语缩略词。禁止外语缩略词是为了维护汉语的纯洁性,这本无可厚非。但在古今中外的文化交流史中,语言文字间的相互渗透都是非常普遍的,在全球化的今天,语言文字“你中有我,
Receivingvisitorsandguestsisanimportantpartofthesecretary’sdailyroutineintheoffice.Thereisacertain【B1】______f
【S1】【S10】
最新回复
(
0
)