首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型 记x=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的矩阵为A-1;
设A为n阶实对称矩阵,r(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型 记x=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的矩阵为A-1;
admin
2021-11-09
52
问题
设A为n阶实对称矩阵,r(A)=n,A
ij
是A=(a
ij
)
n×n
中元素a
ij
的代数余子式(i,j=1,2,…,n),二次型
记x=(x
1
,x
2
,…,x
n
)
T
,把f(x
1
,x
2
,…,x
n
)写成矩阵形式,并证明二次型f(x)的矩阵为A
-1
;
选项
答案
二次型f(x
1
,x
2
,…,x
n
)的矩阵形式为 [*] 因r(A)=n,故A可逆,且 [*] 由 (A
-1
)
T
=(A
T
)
-1
=A
-1
知A
-1
也是实对称矩阵,因此二次型f(x)的矩阵为A
-1
.
解析
本题主要考查二次型的基本理论.首先求出二次型f(x)的矩阵,并证明该矩阵为A
-1
,且为对称矩阵.然后证明矩阵A与A
-1
合同.
转载请注明原文地址:https://kaotiyun.com/show/9My4777K
0
考研数学二
相关试题推荐
设u=,求du.
求微分方程y〞+2y′-3y=(2χ+1)eχ的通解.
微分方程y〞+4y=4χ-8的通解为_______.
设函数f(x)连续,则等于().
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T.令C=(α1,α2,α3,α4,b),求Cx=b的通解.
微分方程xyˊ=y(lnxy-1)的通解是.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解。
求下列极限,能直接使用洛必达法则的是[].
函数f(x)在区间(﹣1,1)内二阶可导,已知f(0)=0,f’(0)=1,且当x∈(﹣1,1)时f’’(x)﹥0成立,则()
设f(χ)在χ=0的某一邻域内有连续的四阶导数,且当χ≠0时,f(χ)≠0,若F(χ)=在χ=0点连续,则必有()
随机试题
简述财务类人员的职业生涯规划。
做B-D试验的注意事项有
某新生儿,诊断为单侧完全性唇裂合并单侧完全性腭裂,同时伴有鼻部畸形。腭裂的正畸治疗应开始于
实物资产清查的技术推算法适应范围广,绝大部分实物资产都可以采用这种方法进行清查。()
关于培训与开发组织体系的陈述,错误的是()。
2013年4月,吴某设立一家有限责任公司,从事绿色食品开发,注册资本为200万元。公司成立半年后,为增加产品开发力度,吴某拟新增资本100万元,并为此分别与贾某、刘某洽谈,该二人均有意愿认缴全部新增资本,加入吴某的公司。吴某遂先后与贾某、刘某二人就投资事项
侦查:调查:证据
马克思主义中国化就是把马克思主义基本原理同中国革命、建设和改革的实践结合起来,同中国的优秀历史传统和优秀文化结合起来,既坚持马克思主义,又发展马克思主义。马克思主义中国化的科学内涵包括
下列有关数据库的描述,正确的是()。
AccordingtoPrimeMinisterWenJiabao,whatwillChinado?
最新回复
(
0
)