首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C均是3阶矩阵,满足AB=一2B,CAT=2C其中 证明:对任何3维向量ξ,A100ξ与ξ必线性相关.
设A,B,C均是3阶矩阵,满足AB=一2B,CAT=2C其中 证明:对任何3维向量ξ,A100ξ与ξ必线性相关.
admin
2014-04-23
68
问题
设A,B,C均是3阶矩阵,满足AB=一2B,CA
T
=2C其中
证明:对任何3维向量ξ,A
100
ξ与ξ必线性相关.
选项
答案
因Aβ
i
=一2β
i
,(i=1,2),故A
100
β
i
=(一2)
100
β
i
=2
100
β
i
.(i=1,2),Aα
1
=2α
1
,故A
100
α
1
=2
100
α
1
. 对任意的3维向量ξ
1
,因β
1
,β
2
.α
1
线性无关,ξ可由β
1
,β
2
,α
1
线性表示,且表示法唯一. 设ξ=μ
1
β
1
+μ
2
β
2
+μ
3
α
1
,则A
100
ξ=A
100
(μ
1
β
1
+μ
2
β
2
+μ
3
α
1
)=μ
1
A
100
β
1
+μ
2
A
100
β
2
+μ
3
A
100
α
1
=μ
1
2
100
β
1
+μ
2
100
β+μ
3
2
100
α
1
=2
100
(μ
1
β
1
+μ
2
β
2
+μ
3
α
1
)=2
100
ξ.得证A
100
ξ和ξ成比例,A
100
ξ和ξ线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/9N54777K
0
考研数学一
相关试题推荐
求空间曲线在xOy面上的投影曲线方程.
已知单位向量与三个坐标轴的夹角相等,B是点M(1,-3,2)关于点N(-1,2,1)的对称点,求
已知|a|=2,|b|=5,a和b的夹角为2/3π,如果向量A=λa+17b与B=3a-b垂直,则系数λ=________________.
设A为4阶矩阵,r(A)=2,α1,α2为AX=0的两个线性无关解,β1,β2为AX=b的特解,下列四组中可作为AX=b的通解的是().
设f(x)在x=0的邻域内二阶连续可导,f’(0)=0,又则下列结论正确的是().
y=y(x)(x>0)是微分方程xy′-6y=﹣6满足y()=10的解.P为曲线y=y(x)上的一点,曲线y=y(x)在点P的法线在y轴上的截距为IP,为使IP最小,求P的坐标.
设y0(x)为微分方程y"+py’+qy=2e-2x满足y0(0)=0,y’0(0)=1的特解,且λ1=-1为其中一个特征值,该微分方程的通解为().
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有命题①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(Ⅰ)的解.其中正确的是().
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求P{Y≤X}.
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
随机试题
字长是CPU的主要性能指标之一,它表示()。
若以湿空气作为干燥介质,由于夏季的气温高,则湿空气用量就少。 ()
列宁关于社会主义建设理论的主要贡献不包括()
下列关于脊休克的论述中,错误的是
土壤污染弓I起钩端螺旋体病和炭疽病的危害途径是
无效合同的财产处理方式不包括()。
高气压中心附近的天气一般是雷雨。()
唯物辩证法认为()。
1,2,5,10,17,()。
某个公司希望通过Internet进行安全通信,保证从信戽源到目的地之间的数据传输以密文形式出现,而且公司不希望由于在中间节点使用特殊的安全单元增加开支,最合适的加密方式是______。
最新回复
(
0
)