首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求线性方程组的通解,并求满足条件x12=x22的所有解.
求线性方程组的通解,并求满足条件x12=x22的所有解.
admin
2018-06-15
796
问题
求线性方程组
的通解,并求满足条件x
1
2
=x
2
2
的所有解.
选项
答案
对增广矩阵作初等行变换,有 [*] 方程组的解:令x
3
=0,x
4
=0得x
2
=1,x
1
=2.即α=(2,1,0,0)
T
. 导出组的解: 令x
3
=1,x
4
=0得x
2
=3,x
1
=1.即η
1
=(1,3,1,0)
T
; 令x
3
=0,x
4
=1得x
2
=0,x
1
=-1.即η
2
=(-1,0,0,1)
T
. 因此方程组的通解是:(2,1,0,0)
T
+k
1
(1,3,1,0)
T
+k
2
(-1,0,0,1)
T
. 而其中满足x
1
2
=x
2
2
的解,即(2+k
1
-k
2
)
2
=(1+3k
1
)
2
. 那么2+k
1
-k
2
=1+3k
1
或2+k
1
-k
2
=-(1+3k
1
), 即k
2
=1-2k
1
或k
2
=3+4k
1
. 所以(1,1,0,1)
T
+k(3,3,1,-2)
T
和(-1,1,0,3)
T
+k(-3,3,1,4)
T
为满足x
1
2
=x
2
2
的所有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/9Pg4777K
0
考研数学一
相关试题推荐
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间内方程f(x)=0的实根个数为()
微分方程3extanydx+(1-ex)sec2ydy=0的通解是_______
证明:等式
设A是n阶可逆阵,每行元素之和都等于常数a.证明:a≠0;
设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑.∑与平面z=0,z=2所围成的立体为Ω.求曲面∑的方程;
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1,过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒
设半径为R的球面∑的球心在定球面x2+y2+z2=a2(a>0)上,问当R取何值时,球面∑在定球面内部的哪部分面积最大?
设A,B是任两个随机事件,下列事件中与A+B=B不等价的是().
计算行列式Dn=之值.
设有一半径为R,长度为l的圆柱体,平放在深度为2R的水池中(圆柱体的侧面与水面相切).设圆柱体的比重为ρ(ρ>1),现将圆柱体从水中移出水面,问需做多少功?
随机试题
A.异烟肼、吡嗪酰胺B.左旋氧氟沙星C.链霉素D.糖皮质激素E.利福平
女性,60岁,因右上腹痛伴发热3天入院,2个月前因心衰住院,治疗后好转。体检:巩膜无黄染,心率120次/分,右上腹压痛、肌紧张,Murphy征(+),可扪及肿大的胆囊最可能的诊断是
关于溃疡性结肠炎的叙述,正确的是
下列关于刑事司法协助的说法中正确的有哪些?()
关于资质认定的概念,下列描述正确的是()。
将反应MnO2+HCl→MnCl2+Cl2+H2O配平后,方程式中MnCl2的系数是:
下列报表中不可以设计成预置报表的是()。
与不公开直接发行股票方式相比,公开间接发行股票方式的特点是()。
是国家的法律监督机关。
2009年民政事业费占国家财政支出比重由2008年的3.4%下降到2.9%,比上年降低了0.5个百分点,比2001年提高了1.4个百分点。2002年至2006年间,中央转移支付年增长额最大的年份是()。
最新回复
(
0
)