首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(09年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a). (Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且f′(χ)=
(09年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a). (Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且f′(χ)=
admin
2021-01-25
77
问题
(09年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a).
(Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且
f′(χ)=A,则f′
+
(0)存在,且f′
+
(0)=A.
选项
答案
(Ⅰ)取F(χ)=f(χ)=-[*](χ-a), 由题意知F(χ)在[a,b]上连续,在(a,b)内可导,且 [*] 根据罗尔定理,存在ξ∈(a,b),使得F′(ξ)=f′(ε)-[*]=0,即 f(b)-f(a)=f′(ξ)(b-a). (Ⅱ)对于任意的t∈(0,ξ),函数f(χ)在[0,t]上连续,在(0,t)内可导,由右导数定义及拉格朗日中值定理 [*], 其中ξ∈(0,)t. 由于[*]f′(t)=A,且当t→0
+
时,ξ→0
+
,所以[*]f′(ξ)=A,故f′
+
(0)存在,且f′
+
(0)=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/9Vx4777K
0
考研数学三
相关试题推荐
设X~N(2,σ2),其分布函数为F(x),则对于任意实数a,有().
设A是秩为n—1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
A、 B、 C、 D、 B这是无界函数的反常积分,x=+1为瑕点,与求定积分一样,作变量替换x=sint,其中故选B。
设随机变量X的概率分布为则常数a=
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2—α4,α3+α4,α2+α3,2α1+α2+α3的秩是().
设随机变量X和y独立同分布,记U=X—Y,V=X+Y,则随机变量U与V必然
设X是一随机变量,E(X)=μ,D(X)=σ2(μ,σ2>0常数),则对任意常数C必有()
[2015年]设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0)=___________.
[2010年]箱内有6个球,其中红、白、黑球的个数分别为1,2,3个.现从箱中随机的取出2个球.记X为取出的红球个数,Y为取出的白球个数.求cov(X,Y).
(1998年)设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.试证存在ξ,η∈(a,b),使得
随机试题
GB/T18604-2001规定,对于多声道气体超声流量计的分辨率应为()m/s。
哈佛大学的一位教授曾经说过:“薪水仅仅可以买到基本水准的工作表现,要成为优秀的领导人,必须有为下属提供内在报酬的能力。”下列哪种激励理论可以支持该教授的说法()
肝火犯肺证的辨证要点是肝脾不调证的辨证要点是
A.体重低于正常均值5%~10%B.体重低于正常均值10%~15%C.体重低于正常均值15%~25%D.体重低于正常均值25%~40%E.体重低于正常均值40%以上Ⅲ(重)度营养不良
巴比妥类钠盐水溶液与空气中哪种气体接触发生沉淀()
根据《证券投资基金法》的规定,基金管理人不得有( )等行为。
我国发展对外贸易坚持的方针是()。
下列语句中有语病的一句是()。
牧人起义
ThepurposeoftheAmericancourtsystemistoprotecttherightsofthepeople.AccordingtoAmericanlaw,ifsomeoneisaccuse
最新回复
(
0
)