首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(09年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a). (Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且f′(χ)=
(09年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a). (Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且f′(χ)=
admin
2021-01-25
76
问题
(09年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a).
(Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且
f′(χ)=A,则f′
+
(0)存在,且f′
+
(0)=A.
选项
答案
(Ⅰ)取F(χ)=f(χ)=-[*](χ-a), 由题意知F(χ)在[a,b]上连续,在(a,b)内可导,且 [*] 根据罗尔定理,存在ξ∈(a,b),使得F′(ξ)=f′(ε)-[*]=0,即 f(b)-f(a)=f′(ξ)(b-a). (Ⅱ)对于任意的t∈(0,ξ),函数f(χ)在[0,t]上连续,在(0,t)内可导,由右导数定义及拉格朗日中值定理 [*], 其中ξ∈(0,)t. 由于[*]f′(t)=A,且当t→0
+
时,ξ→0
+
,所以[*]f′(ξ)=A,故f′
+
(0)存在,且f′
+
(0)=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/9Vx4777K
0
考研数学三
相关试题推荐
设是f(x)的一个原函数,对于下述两个反常积分M=∫0+∞x4f’(x)dx,N=∫0+∞x3f"(x)dx,正确的结论是()
设f(x),g(x)(a<x<b)为大于零的可导函数,且f’(x)g(x)一f(x)g’(x)<0,则当a<x<b时,有().
已知,P为3阶非零矩阵,且满足PQ=0,则
两个4阶矩阵满足A2=B2,则
[2006年]设总体X的概率密度为f(x)=e-|x|/2,-∞<x<+∞.X1,X2,…,Xn为总体X的简单随机样本,其样本方差为S2,则E(S2)=___________.
[2006年]设随机变量X服从正态分布N(μ1,σ12),Y服从正态分布N(μ2,σ22),且P(|X-μ1|<1)>P(|Y-μ2|<1),则().
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
(2013年)=_______。
[2017年]某工程师为了解一台天平的精度,用该天平对一物体的质量做n次测量,该物体的质量μ是已知的,设n次测量结果X1,X2,…,Xn相互独立,且均服从正态分布N(μ,σ2).该工程师记录的是n次测量的绝对误差Zi=|Xi-μ|(i=1,2,…,n)
(1998年)设
随机试题
简述人际交往的心理需要。
CT图像后处理中电子放大的特点是
患者关节红肿,痛如刀割,筋脉抽掣,入夜更甚,壮热烦渴,舌红少津,脉弦数。宜选用方
产后产妇全身恢复至未孕状态的一段时期胎盘娩出后子宫逐渐恢复至未孕状态的过程
铺筑沥青混合料面层时,应喷洒粘层油的部位有()等。
在K线理论的四个价格中,()是最重要的。
公司需要变更登记的行为有()。Ⅰ.修改公司章程Ⅱ.公司解散Ⅲ.改变经营范围Ⅳ.变更法定代表人
税务机关的工作人员徇私舞弊,不征或者少征应征税款,致使国家税收遭受重大损失的,处()年以下有期徒刑或者拘役。
下列几种形式中,不属于公务员惩戒种类的是:()
SurvivingintheJungle1.Rightequipment-【T1】______clothing【T1】______-Theonlydefenceagainst【T2】______【T2】______-Th
最新回复
(
0
)