首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(09年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a). (Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且f′(χ)=
(09年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a). (Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且f′(χ)=
admin
2021-01-25
85
问题
(09年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a).
(Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且
f′(χ)=A,则f′
+
(0)存在,且f′
+
(0)=A.
选项
答案
(Ⅰ)取F(χ)=f(χ)=-[*](χ-a), 由题意知F(χ)在[a,b]上连续,在(a,b)内可导,且 [*] 根据罗尔定理,存在ξ∈(a,b),使得F′(ξ)=f′(ε)-[*]=0,即 f(b)-f(a)=f′(ξ)(b-a). (Ⅱ)对于任意的t∈(0,ξ),函数f(χ)在[0,t]上连续,在(0,t)内可导,由右导数定义及拉格朗日中值定理 [*], 其中ξ∈(0,)t. 由于[*]f′(t)=A,且当t→0
+
时,ξ→0
+
,所以[*]f′(ξ)=A,故f′
+
(0)存在,且f′
+
(0)=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/9Vx4777K
0
考研数学三
相关试题推荐
设二维正态随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X一Y,不相关的充分必要条件为()
设随机变量X服从正态分布N(μ,σ2),其分布函数为F(x),则有()
设向量β可由向量组α1,α2,…,αm线性表出,但不能由向量组(I):α1,α2,…,αm-1线性表出.记向量组(Ⅱ):α1,α2,…,αm-1,β,则().
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
A,B是两个事件,则下列关系正确的是().
已知函数f(x,y,z)=x3y2z及方程x+y+z一3+e-3=e-(x+y+z).(I)如果x=x(y,z)是由方程(*)确定的隐函数满足x(1,1)=1,又u=f(x(y,z),y,z),求(Ⅱ)如果z=z(x,y)是由方程(*)确定的隐函数满足
设工厂A和工厂B的产品的次品率分别为1%和2%,现从由A和B的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A厂生产的概率是________。
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点x处的增量且y(0)=π,则y(1)=__________.
(2016年)求极限
(2016年)设函数f(u,v)可微,z=z(x,y)由方程(x+1)z—y2=x2f(x—z,y)确定,则dz|(0,1)=______.
随机试题
蚤咬肾
张某,男,20岁。小便时受寒诱发腹痛,以少腹疼痛为主,拘急而痛,得温可减,舌苔薄白,脉沉紧。其中医治法当选用
下列属于直接作用的有()
我国宁夏回族自治区著名的水利工程唐徕渠修建于()。
正式宴请时,正确的做法是()。
【2013.四川泸州】学生在学习一篇议论文时,边读边勾画出论点依据的逻辑关系图以帮助理解,这种学习方法属于()。
根据下面材料回答下列问题。根据上图,下列说法正确的是()。
WhichamongthefollowingisthehighestmountaininBritain?
NewDiscoveriesofPublicTransportA)AnewstudyconductedfortheWorldBankbyMurdochUniversity’sInstituteforScienceand
ToHelptheKids,ParentsGoBacktoSchoolForafewyearsnow,everyparentofanewbornbabyintheSouthFloridadistric
最新回复
(
0
)