首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f′(x)=arctan(1—x),且f(0)=0,则∫01f(x)dx=________.
设f′(x)=arctan(1—x),且f(0)=0,则∫01f(x)dx=________.
admin
2019-01-29
37
问题
设f′(x)=arctan(1—x),且f(0)=0,则∫
0
1
f(x)dx=________.
选项
答案
[*](π—2).
解析
已知 f′(x)=arctan(1—x),求I=∫
0
1
f(x)dx,我们不必先求出f(x),而是把求I转化为求与f′(x)有关的定积分,就要用分部积分法.或把f(x)
f(0)+∫
0
x
f′(y)dy再积分.
方法: 利用分部积分法可得
转载请注明原文地址:https://kaotiyun.com/show/9uj4777K
0
考研数学二
相关试题推荐
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
若函数f(x)=asinx+处取得极值,则a=___________。
求证:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=1一=0下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ez一xz=0所确定,求.
交换累次积分I的积分次序:I=.
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设n阶(n≥3)矩阵,A=,若矩阵A的秩为n—1,则a必为()
设A是三阶矩阵,ξ1,ξ2,ξ3是三个线性无关的三维列向量,满足Aξi=ξi,i=1,2,3,则A=____________.
计算定积分。
计算积分:已知f(x)=求∫2n2n+2(x一2n)e一xdx,n=2,3,….
随机试题
甲、乙两人轮流投篮,每人每次投一球。约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束。设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响。则投篮结束时乙只投了两个球的概率为:
复习的形式有()
从20世纪30年代~70年代,西方政治学的主要研究方法是()。
某公司2010年度的净利润为280万元,所得税为120万元,利息费用为40万元,总资产平均余额为4000万元,最常见的总资产收益率为()
特征,特色n.f______
玉户帘中卷不去,捣衣砧上拂还来。玉户:捣衣砧:
由青蒿、鳖甲、知母、地骨皮、秦艽、银柴胡、胡黄连、甘草组成的方剂是()
罂粟壳止痛宜
填充墙与承重主体结构间的空(缝)隙部位施工,应在填充墙砌筑()后进行。
在正向市场中,基差为正,现货市场的价格大于期货市场的价格。( )
最新回复
(
0
)