首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列幂级数的收敛域或收敛区间: (Ⅰ)xn-1; (Ⅱ)x2n; (Ⅲ)anxn的收敛半径R=3;(只求收敛区间) (Ⅳ)an(x-3)n,其中x=0时收敛,x=6时发散.
求下列幂级数的收敛域或收敛区间: (Ⅰ)xn-1; (Ⅱ)x2n; (Ⅲ)anxn的收敛半径R=3;(只求收敛区间) (Ⅳ)an(x-3)n,其中x=0时收敛,x=6时发散.
admin
2016-10-26
79
问题
求下列幂级数的收敛域或收敛区间:
(Ⅰ)
x
n-1
;
(Ⅱ)
x
2n
;
(Ⅲ)
a
n
x
n
的收敛半径R=3;(只求收敛区间)
(Ⅳ)
a
n
(x-3)
n
,其中x=0时收敛,x=6时发散.
选项
答案
(Ⅰ)[*]x
n
有相同的收敛半径,可以用求收敛半径公式即(11.3)式计算收敛半径.首先计算 [*] (Ⅱ)这是缺项幂级数即幂级数的系数有无限多个为0(a
2n-1
=0,n=1,2,…),所以不能直接用求收敛半径公式,求收敛半径R.一般有两种方法: 方法1°它是函数项级数,可直接用根值判别法.由于 [*] 因此R=[*] 方法2°作变量替换t=x
2
,原级数变成[*]t
n
,对此级数用求收敛半径R的公式: [*] 因此,此级数发散.所以原级数的收敛域为[*] (Ⅲ)[*],由幂级数收敛性的特点知,[*]na
n
(x-1)
n+1
与[*]a
n
(x-1)
n
有相同的收敛半径R=3.因而其收敛区间为(-2,4). (Ⅳ)考察[*]a
n
t
n
,由题设t=-3时它收敛[*]收敛半径R≥3,又t=3时其发散[*]R≤3.因此R=3,[*]a
n
t
n
的收敛域是[-3,3),原级数的收敛域是[0,6).
解析
转载请注明原文地址:https://kaotiyun.com/show/A2u4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
证明下列极限都为0;
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
微分方程y"-2y’+2y=ex的通解为________.
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
已知(1)计算行列式|A|.(2)当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
随机试题
以下属于商品入库阶段工作内容的是()
Eggs,thoughgoodtohealth,have______offatcontent.
在相同条件下,如果固定桥桥体的厚度减半,则其挠曲变形量变为
承包方必须在建设工程勘察、设计资质证书规定的()内承担建设工程的勘察、设计业务。
下列关于工程项目管理组织形式的特点说法正确的是( )。
记账凭证账务处理程序的特点是直接根据记账凭证逐笔登记总分类账。()
在英国的家庭中,绝对看不到对孩子没有理由的娇宠,犯错误的孩子会受到纠正甚至惩罚。家长们往往在尊重孩子独立人格的前提下,对孩子进行严格的管束,为的是让孩子明白,他们的行为不是没有边际的,不可以为所欲为。英国的法律明确规定允许家长体罚孩子。对这段文字理解不准确
直观行动思维的典型方式是()
国民生产净值与国民收入的差别是()
A、 B、 C、 D、 C在某个接口的配置模式下,指定当该接口断开或连接时向管理站发出通知的命令格式为:snmptraplink—status,所以选C。
最新回复
(
0
)