首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列幂级数的收敛域或收敛区间: (Ⅰ)xn-1; (Ⅱ)x2n; (Ⅲ)anxn的收敛半径R=3;(只求收敛区间) (Ⅳ)an(x-3)n,其中x=0时收敛,x=6时发散.
求下列幂级数的收敛域或收敛区间: (Ⅰ)xn-1; (Ⅱ)x2n; (Ⅲ)anxn的收敛半径R=3;(只求收敛区间) (Ⅳ)an(x-3)n,其中x=0时收敛,x=6时发散.
admin
2016-10-26
114
问题
求下列幂级数的收敛域或收敛区间:
(Ⅰ)
x
n-1
;
(Ⅱ)
x
2n
;
(Ⅲ)
a
n
x
n
的收敛半径R=3;(只求收敛区间)
(Ⅳ)
a
n
(x-3)
n
,其中x=0时收敛,x=6时发散.
选项
答案
(Ⅰ)[*]x
n
有相同的收敛半径,可以用求收敛半径公式即(11.3)式计算收敛半径.首先计算 [*] (Ⅱ)这是缺项幂级数即幂级数的系数有无限多个为0(a
2n-1
=0,n=1,2,…),所以不能直接用求收敛半径公式,求收敛半径R.一般有两种方法: 方法1°它是函数项级数,可直接用根值判别法.由于 [*] 因此R=[*] 方法2°作变量替换t=x
2
,原级数变成[*]t
n
,对此级数用求收敛半径R的公式: [*] 因此,此级数发散.所以原级数的收敛域为[*] (Ⅲ)[*],由幂级数收敛性的特点知,[*]na
n
(x-1)
n+1
与[*]a
n
(x-1)
n
有相同的收敛半径R=3.因而其收敛区间为(-2,4). (Ⅳ)考察[*]a
n
t
n
,由题设t=-3时它收敛[*]收敛半径R≥3,又t=3时其发散[*]R≤3.因此R=3,[*]a
n
t
n
的收敛域是[-3,3),原级数的收敛域是[0,6).
解析
转载请注明原文地址:https://kaotiyun.com/show/A2u4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
设x元线性方程组Ax=b,其中,证明行列式丨A丨=(n+1)an.
行列式为f(x),则方程f(x)=0的根的个数为
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).设
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).写
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.求y(x)的表达式.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)丨x2+y2+z2≤t2},D(t)={(z,y)丨x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
设f(x)是连续函数当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数.
随机试题
有以下程序:#include<stdio.h>main(){intsum=10,n=1;while(n<3){sum=sum—n;n++;}printf("%d,%d",n,sum);}
谭某拥有一套建筑面积为140m2的住宅,位于一幢钢筋混凝土结构高层住宅楼的12层。该套住宅的套内房屋使用面积为95m2,套内墙体面积为20m2,套内未封闭阳台的水平投影面积为10m2,谭某所在楼层单元楼梯间的建筑面积为20m2。一个月前谭某委托乙房地产经纪
垂直风管与每层水平风管交接处的水平管段上设什么阀门为宜?(2004,94)
穿越铁路的燃气管道的套管,应符合的要求是()。
在我国,最早以马克思主义观点写成的教育著作是()。
Whattheseyoungmenandwomenneedtodonowistodevelopamentalityto________theiridealswithreality.
(2009年试题,一)设函数z=f(x,y)的全微分为出=xdx+ydy,则点(0,0)().
Inoursocietytherazorofnecessitycutsclose.Youmustmakeabucktosurvivetheday.Youmustworktomakeabuck.Thejob
Whenwewantto【C1】______otherpeoplewhatwethink,wecandoitnotonlywiththehelpofwords,butalsoinmany【C2】______way
A、Sheattendedoneoftheirmeetings.B、Herroommateisamember.C、Shereadabouttheminthenewspaper.D、Shesawthemprotest
最新回复
(
0
)