首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,证明BTAB为正定矩阵的充分必要条件是r(B)=n。
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,证明BTAB为正定矩阵的充分必要条件是r(B)=n。
admin
2018-12-19
86
问题
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B
T
为B的转置矩阵,证明B
T
AB为正定矩阵的充分必要条件是r(B)=n。
选项
答案
必要性:设B
T
AB为正定矩阵,则r(B
T
AB)=n,因为r(B
T
AB)≤r(B)≤n,故有r(B)=n。 充分性:因(B
T
AB)
T
=B
T
A
T
(B
T
)
T
=B
T
AB,故B
T
TAB为实对称矩阵。 若r(B)=n,则线性方程组Bx=0只有零解,从而对任意的n维实列向量x≠0,有Bx≠0。又A为正定矩阵,所以对于Bx≠0,有(Bx)
T
A(Bx)>0。于是当x≠0,有x
T
(B
T
AB)x=(Bx)
T
A(Bx)>0,故B
T
AB为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/cVj4777K
0
考研数学二
相关试题推荐
设D是位于曲线下方、x轴上方的无界区域.(1)求区域D绕x轴旋转一周所成旋转体的体积V(a);(2)当a为何值时,V(a)最小.并求此最小值.
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt当x取何值时,F(x)取最小值.
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=_________.
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有【】
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式f′(χ)+f(χ)-∫0χf(t)dt(1)求导数f′(χ);(2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
(1995年)设f(χ)和φ(χ)在(-∞,+∞)内有定义,f(χ)为连续函数,且f(χ)≠0,φ(χ)有间断点,则
设y1=ex,y2=x2为某二阶线性齐次微分方程的两个特解,则该微分方程为____________.
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点.(Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
设f(a)=,试求:(Ⅰ)函数f(a)的定义域;(Ⅱ)函数f(a)的值域.
随机试题
下列符合原位癌的是
过渡乳成熟乳
某女,孕3个月余,小腹胸胁胀痛,情志抑郁,嗳气吐酸,烦躁易怒,苔薄黄,脉弦滑。最佳治法是()
项目建议书的内容包括()。
根据《旅游饭店星级的划分与评定》,我国旅游饭店星级评定实行()。
设二叉树的前序序列为ABDEGHCFIJ,中序序列为DBGEHACIFJ,则后序序列为()。
计算机能直接执行的程序是()。
Whatdoweknowabouttheman?
A、withB、atC、forA
Time______,bothmyparentswillattendhisweddingceremony.
最新回复
(
0
)