首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数y=C1ex+C2e—2x+xex满足的一个微分方程是( )
函数y=C1ex+C2e—2x+xex满足的一个微分方程是( )
admin
2018-12-19
54
问题
函数y=C
1
e
x
+C
2
e
—2x
+xe
x
满足的一个微分方程是( )
选项
A、y’’一y’一2y=3xe
x
。
B、y’’一y’一2y=3e
x
。
C、y’’+y’一2y=3xe
x
。
D、y’’+y’一2y=3e
x
。
答案
D
解析
根据所给解的形式,可知原微分方程对应的齐次微分方程的特征根为
λ
1
=1,λ
2
=一2。
因此对应的齐次微分方程的特征方程为
λ
2
+λ一2=0,
故对应的齐次微分方程为y’’+y’一2y=0。
又因为y
*
=xe
x
为原微分方程的一个特解,而λ=1为特征根且为单根,故原非齐次线性微分方程右端的非齐次项形式为f(x)=Ce
x
(C为常数)。
比较四个选项,故选D。
转载请注明原文地址:https://kaotiyun.com/show/jjj4777K
0
考研数学二
相关试题推荐
设f(x)在[0,+∞]连续,且证明至少存在ξ∈(0,+∞),使得f(ξ)+ξ=0.
如图3—3,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是()
设f(x)连续,求φ’(x),并讨论φ’(x)在x=0处的连续性.
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a一δ,a+δ)时,必有()
设函数设数列{x0}满足,证明存在,并求此极限.
已知f(x)=ax3+x2+2在x=0和x=一1处取得极值,求f(x)的单调区间、极值点和拐点.
(2013年)设平面区域D由直线χ=3y,y=3y及χ+y=8围成,计算dχdy.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
假设λ为n阶可逆矩阵A的一个特征值,证明:(1)为A一1的特征值;(2)为A的伴随矩阵A*的特征值.
求由曲线y=1+sinx与直线y=0,x=0,x=π围成的曲边梯形绕Ox轴旋转而成旋转体体积V.
随机试题
制动反应时间是指驾驶员接受到某种条件反射后,脚从加速踏板移向制动踏板的过程所_______。
简述X理论的基本观点。
将毛泽东思想规定为党一切工作的指针是在
运动会已经延迟到下星期一了。
A.溢出性蛋白尿B.肾小管性蛋白尿C.急性肾小球肾炎D.直立性蛋白尿E.隐匿性肾炎活动后出现尿蛋白,平卧后消失
A.黏液便B.水样便C.果酱样大便D.嗜酸性粒细胞减少E.嗜酸性粒细胞增加细菌性痢疾多见
下列无法使髋关节运动的下肢肌是
业主委员会是业主大会的执行机构,业主委员会由业主大会选举产生。一个物业管理区域应当成立一个委员会,业主委员会一般由3~7名的单数业主担任。()
关于复验,以下表述正确的是( )。
最近最经常上演的15部歌剧中没有19世纪德国作曲家理查德.瓦格纳的作品。虽然音乐制作人都希望制作听众想听的作品,但瓦格纳的作品没有被相对频繁地演出并不能表明他的作品不受欢迎,而是因为他的歌剧的舞台演出费用极其昂贵。下面哪项,如果正确,最能支持上面的结论?
最新回复
(
0
)