首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时 |f(x)|≤M0, |f’"(x)|≤M3, 其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时 |f(x)|≤M0, |f’"(x)|≤M3, 其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
admin
2019-08-06
74
问题
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时
|f(x)|≤M
0
, |f’"(x)|≤M
3
,
其中M
0
,M
3
为非负常数,求证f"(x)在(0,+∞)上有界.
选项
答案
分别讨论x>1与0
0+[*]M
3
. 2)当0<x≤1时对f"(x)用拉格朗日中值定理,有 f"(x)=f"(x)一f"(1)+f"(1)=f’"(ξ)(x一1)+f"(1),其中ξ∈(x,1). 从而 |f"(x)|≤|f’"(ξ)||x一1|+|f"(1)|≤M
3
+|f"(1)| (x∈(0,1]). 综合即知f"(x)在(0,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/7wJ4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0.f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g’’(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
求极限
设一曲线过点(e,1),且在此曲线上任意一点M(x,y)处的法线斜率为—,求此曲线方程.
两名射手各向自己的靶独立射击,直到有一次命中时该射手才(立即)停止射击.如果第i名射手每次命中概率为pi(0<pi<1,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为_________.
求下列平面图形的面积:y=x,y=xlnx及x轴所围图形;
设某种电子器件的寿命(以小时计)T服从指数分布,概率密度为f(t)=,其中λ>0未知.现从这批器件中任取n只在时刻t=0时投入独立寿命试验,试验进行到预定时T0结束,此时有k(0<k<n)只器件失效,试求λ的最大似然估计.
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
一辆汽车沿一街道行驶,要过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红、绿两种信号显示的时间相等.以X表示该汽车首次遇到红灯前已通过的路口的个数,求X的概率分布.
设A是n阶矩阵,下列结论正确的是().
在某一人群中推广新技术是通过其中已掌握新技术的人进行的,设该人群的总人数为N,在t=0时刻已掌握新技术的人数为xo,在任意时刻t已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数k>
随机试题
下列不属于电子商务供应链管理特点的是()
Afterabusydayofworkandplay,thebodyneedstorest.Sleepisnecessaryforgoodhealth.Duringthistime,thebodyrecove
疲劳的确切定义是
某患者,65岁,由于肾阳不足、命门火衰导致腰膝酸冷,精神不振,怯寒畏冷,阳痿遗精,大便溏薄,尿频而清。宜选用
甲公司属于生产企业,为增值税一般纳税人,适用的增值税税率为17%。20×3~20×6年,与固定资产有关的业务资料如下:(1)20×3年12月10日,甲公司购入需要安装的生产线,取得的增值税专用发票注明价款为1160万元,增值税额为197.2万元;发生保险
营业税纳税人购置税控收款机,可凭购进税控收款机取得的增值税专用发票上注明的增值税税额,或者普通发票上注明价款计算出的可抵免税额,抵免当期应纳营业税税额。()
甲公司7月1日通过报纸发布广告,称其有某型号的电脑出售,每台售价8000元,随到随购,数量不限,广告有效期至7月30日。乙公司委托王某携带金额16万元的支票于7月28日到甲公司购买电脑,但甲公司称广告所述电脑已全部售完。乙公司为此遭受一定的经济损失。根据
追求个人特有潜能的充分发挥以及理想和人的价值的完美表现属于()。
甲、乙两个乡村阅览室,甲阅览室科技类书籍数量的1/5相当于乙阅览室该类书籍的1/4,甲阅览室文化类书籍数量的2/3相当于乙阅览室该类书籍的1/6,甲阅览室科技类和文化类书籍的总量比乙阅览室两类书籍的总量多1000本,甲阅览室科技类书籍和文化类书籍的比例为2
Whatisthewomandoingatthemoment?
最新回复
(
0
)