首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,…,αs线性相关,其中αi=[ai1,ai2…,ain]T,i=1,2,…,s,则下列向量组可能线性无关的是 ( )
已知向量组α1,α2,…,αs线性相关,其中αi=[ai1,ai2…,ain]T,i=1,2,…,s,则下列向量组可能线性无关的是 ( )
admin
2019-08-12
29
问题
已知向量组α
1
,α
2
,…,α
s
线性相关,其中α
i
=[a
i1
,a
i2
…,a
in
]
T
,i=1,2,…,s,则下列向量组可能线性无关的是 ( )
选项
A、β
i
=[a
i2
,a
i1
,a
i3
,…,a
in
]
T
,i=1,2,…,s
B、γ
i
=[a
i1
,a
i1
-a
i2
,a
i3
,…,a
in
]
T
,i=1,2,…,s
C、ξ
i
=[a
i1
,a
i2
,…,a
i,n-1
]
T
,i=1,2,…,s
D、η
i
=[a
i1
,a
i2
,…,a
in
,a
i,n+1
]
T
,i=1,2,…,s
答案
D
解析
n维向量α
i
后面增加了分量(即维数)成n+1维向量η
i
,讨论线性相关性时,相当于以α
i
为列向量的齐次线性方程组增加了一个方程,有可能使方程组
η
1
x
1
+η
2
x
2
+…+η
s
x
s
=0
变得只有零解,即η
1
,η
2
,…,η
3
可能线性无关.故应选(D).
(A),(B)相当于作初等变换,不改变向量组的秩,不改变向量组的线性相关性.(C)中向量减少分量,仍保持线性相关.
转载请注明原文地址:https://kaotiyun.com/show/AON4777K
0
考研数学二
相关试题推荐
已知α1,α2,α3,α4为3维非零列向量,则下列结论中:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(
函数在x=π处的()
设A是n阶正定矩阵,证明:|E+A|>1.
假设λ为n阶可逆矩阵A的一个特征值,证明:为A的伴随矩阵A*的特征值.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anβ.
已知矩阵A=(aij)3×3的第1行元素分别为a11=1,a12=2,a13=一1.又知(A*)T=,其中A*为A的伴随矩阵.求矩阵A.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设A=E+ααT,其中α=(α1,α2,α3)T,且αTα=2,求A的特征值和特征向量.
设ξ0=(1,-1,1,-1)T是线性方程组的一个解向量,试求:(I)方程组(*)的全部解;(Ⅱ)方程组(*)的解中满足x2=x3的全部解.
随机试题
适于治疗健忘的方剂有:
胆红素是从下列哪种物质分解代谢产生的
A.脉率80次/分以下,血压正常B.脉率100~120次/分,血压70~90mmHgC.脉搏细弱或摸不清,血压<70mmHgD.脉搏100次/分以下,血压稍高E.脉搏120次/分以上,血压<70mmHg休克代偿期的临床表现为
患者,男,60岁。3年前急性广泛性前壁心肌梗死,现喘促气逆,不能平卧,夜间尤甚,心悸不寐,咳痰清稀、量多,形寒肢冷,腰膝酸软,小便不利,舌淡暗苔白腻,脉弦细而滑。治疗应首选
中药的规范化名称是指中药的
关于招标控制价,下列说法正确的是()。
甲委托乙购买一台电脑,但要求以乙的名义签订合同,乙同意,遂与丙订购了电脑;后由于甲的原因,乙未能按时向丙支付价款;乙向丙说明了自己是受甲的委托向丙购买电脑的。下列说法正确的是()。
2×17年1月,A上市公司(以下简称“A公司”)为奖励并激励高管,与其管理层成员签署股份支付协议,规定若管理层成员在其后3年中都在公司任职服务,并且公司股价每年均提高10%以上,管理层成员即可以低于市价的价格购买一定数量的本公司股票。同时作为协议的补充,公
有以下程序:voidfun1(char*p){char*q;q=p;while(*q!=’\0’){(*q)++;q++;}}main(){chara[]={"
Itispostulatedthatacureforthediseasewillhavebeenfoundbytheyear2000.
最新回复
(
0
)