首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,…,αs线性相关,其中αi=[ai1,ai2…,ain]T,i=1,2,…,s,则下列向量组可能线性无关的是 ( )
已知向量组α1,α2,…,αs线性相关,其中αi=[ai1,ai2…,ain]T,i=1,2,…,s,则下列向量组可能线性无关的是 ( )
admin
2019-08-12
67
问题
已知向量组α
1
,α
2
,…,α
s
线性相关,其中α
i
=[a
i1
,a
i2
…,a
in
]
T
,i=1,2,…,s,则下列向量组可能线性无关的是 ( )
选项
A、β
i
=[a
i2
,a
i1
,a
i3
,…,a
in
]
T
,i=1,2,…,s
B、γ
i
=[a
i1
,a
i1
-a
i2
,a
i3
,…,a
in
]
T
,i=1,2,…,s
C、ξ
i
=[a
i1
,a
i2
,…,a
i,n-1
]
T
,i=1,2,…,s
D、η
i
=[a
i1
,a
i2
,…,a
in
,a
i,n+1
]
T
,i=1,2,…,s
答案
D
解析
n维向量α
i
后面增加了分量(即维数)成n+1维向量η
i
,讨论线性相关性时,相当于以α
i
为列向量的齐次线性方程组增加了一个方程,有可能使方程组
η
1
x
1
+η
2
x
2
+…+η
s
x
s
=0
变得只有零解,即η
1
,η
2
,…,η
3
可能线性无关.故应选(D).
(A),(B)相当于作初等变换,不改变向量组的秩,不改变向量组的线性相关性.(C)中向量减少分量,仍保持线性相关.
转载请注明原文地址:https://kaotiyun.com/show/AON4777K
0
考研数学二
相关试题推荐
设A=E一ξξT,ξ是非零列向量,证明:(1)A2=A的充要条件是考ξTξ=1;(2)当ξTξ=1时,A不可逆.
设A是主对角元素为0的4阶实对称矩阵,E是4阶单位矩阵,且E+AB是不可逆的对称矩阵,求A.
已知α1,α2,α3,α4为3维非零列向量,则下列结论中:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(
若f(x)在x0点至少二阶可导,且则函数f(x)在x=x0处()
设A是n阶正定矩阵,证明:|E+A|>1.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anβ.
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anξ1;
已知对于n阶方阵A,存在自然数k,使得Ak=O.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
随机试题
信息的加工步骤包括()
Pickouttheappropriateexpressionsfromtheeightchoicesbelowandcompletethefollowingdialoguebyblackeningthecorrespo
下述慢性腹泻的病因中属于感染性因素的是
A、杀酶保苷,便于切片B、增强补脾益气的功能C、降低毒性,保证临床用药安全D、改变药性,扩大药用范围E、消除致泻,增强补肝肾、乌须发作用何首乌蒸制的目的是
简述历史课外读物的主要类型及其相应的教学功能。
人本主义有意义学习有哪些特征?
【B1】【B20】
To:AllemployeesFrom:BenjaminRussekbrussel@hnssoftware.com>Re:ConstructionDearemployees,Iamwritingtoleteveryone
Thebankmanmadeno______(resist)totherobberwithagunpointedathim.
A、Theymoveveryfastthoughthetext.B、Theyvarytheirspeedwhenreading.C、Theyconcentrateonthekeywords.D、Theyre-read
最新回复
(
0
)