首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设x→0时,(1+sinx)x一1是比xtanxn低阶的无穷小,而xtanxn是比(esin2x一1)ln(1+x2)低阶的无穷小,则正整数n等于( )
设x→0时,(1+sinx)x一1是比xtanxn低阶的无穷小,而xtanxn是比(esin2x一1)ln(1+x2)低阶的无穷小,则正整数n等于( )
admin
2019-03-14
44
问题
设x→0时,(1+sinx)
x
一1是比xtanx
n
低阶的无穷小,而xtanx
n
是比(e
sin
2
x
一1)ln(1+x
2
)低阶的无穷小,则正整数n等于( )
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
当x→0时,
(1+sinx)
x
一1=e
xln(1+sinx)
一1~xln(1+sinx)~xsinx~x
2
,
(e
sin
2
x
一1)ln(1+x
2
)~sin
2
x.x
2
~x
4
,
而xtanx
n
~x.x
n
=x
n+1
。因此2<n+1<4,则正整数n=2,故选B。
转载请注明原文地址:https://kaotiyun.com/show/AOj4777K
0
考研数学二
相关试题推荐
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
已知函数f(x)具有任意阶导数,且f’(x)=f2(x),则当n为大于2的正整数时,f(x)的n阶导数是()
设D={(x,y)|(x一1)2+(y—1)2=2},计算二重积分。
一容器的内侧是由图中(如图1—3—6)曲线绕y轴旋转一周而成的曲面,该曲线由连接而成。若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位为m,重力加速度为gm/s2,水的密度为103kg/m3。)
设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在惟一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)一f(0)是比h2高阶的无穷小.
设f(x),ψ(x)在点x=0的某邻域内连续,且当x→0时,f(x)是ψ(x)的高阶无穷小,则当x→0时,∫0xf(t)sintdt是∫0xtψ(t)dt的
设y=f(x)可导,且y’≠0.(Ⅰ)若已知y=f(x)的反函数x=φ(y)可导,试由复合函数求导法则导出反函数求导公式;(Ⅱ)若又设y=f(x)二阶可导,则=________.
已知y1*=xex+e2x,y2*=xex+e-x),y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解.试求其通解及该微分方程.
设A为n阶实对称矩阵,下列结论不正确的是().
设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2一x垂直,则当△x→0时,该函数在x=x0处的微分dy是()
随机试题
资本主义国家产生的一般途径是______。
目前临床上筛选献血员是否感染乙肝病毒,主要检测
症状较轻的感冒,一般不建议使用药物治疗,只要适当饮水、注意休息即可。发热、头痛、咳嗽等症状较重者,俗称重感冒,常由流感病毒引起,此时需要服药治疗。出现感冒症状可尽快对症治疗,清除症状有利于病情恢复。上呼吸道感染简称上感,又称普通感冒。是包括
对机体产生明显效应但不引起毒性反应的药物剂量是()。
目前的除湿方法中,正确的处理过程是_______。
(五)[背景资料]某安装公司总承包一中型冶炼厂的改造及扩建工程,由于施工场地比较狭窄,业主为安装公司在临老厂生活区的河边租用了一百亩农田作为某安装公司临时用地。安装公司在临时租用地内建了食堂、浴室和职工宿舍,在临老厂生活区安排钢结构制作场地和露
客户关系管理系统的具体应用主要体现在:()。
只要教育得法,人人都可以成为歌唱家、科学家、诗人。()
某体育网站的主页地址是:http://www.343.com,打开此主页,浏览“中国足球”页面,将“足球联赛”页面内容以文本文件的格式保存到指定的目录下,命名为“zqls.txt”。
WhatdidJimCantalupopromiseataWallStreetmeetingonApril7?
最新回复
(
0
)