首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+33. 求矩阵A的特征值;
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+33. 求矩阵A的特征值;
admin
2021-02-25
57
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3
3
.
求矩阵A的特征值;
选项
答案
因为α
1
,α
2
,α
3
是线性无关的3维列向量,可知矩阵C=(α
1
,α
2
,α
3
)可逆,所以C
-1
AC=B,即矩阵A与B相似.由此可得矩阵A与B有相同的特征值. 由 [*] 得矩阵B的特征值,也即矩阵A的特征值 λ
1
=λ
2
=1,λ
3
=4.
解析
转载请注明原文地址:https://kaotiyun.com/show/AZ84777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导(0≤a<b≤).证明:存在ξ,η∈(a,b),使得
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
设x与y均大于0,且x≠y,证明:<1.
设A=,则下列矩阵中与A合同但不相似的是
若三阶方阵,试求秩(A).
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)