首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(u,v)一阶连续可偏导,f(tx,ty)=t3f(x,y),且f’1(1,2)=1,f’2(1,2)=4,则f(1,2)=________.
设f(u,v)一阶连续可偏导,f(tx,ty)=t3f(x,y),且f’1(1,2)=1,f’2(1,2)=4,则f(1,2)=________.
admin
2021-11-25
40
问题
设f(u,v)一阶连续可偏导,f(tx,ty)=t
3
f(x,y),且f’
1
(1,2)=1,f’
2
(1,2)=4,则f(1,2)=________.
选项
答案
3
解析
f(tx,ty)=t
3
f(x,y)两边对t求导数得
xf’
1
(tx,ty)+yf’
2
(tx,ty)=3t
2
f(x,y)
取t=1,x=1,y=2得f’
1
(1,2)+2f’
2
(1,2)=3f(1,2),故f(1,2)=3.
转载请注明原文地址:https://kaotiyun.com/show/AZy4777K
0
考研数学二
相关试题推荐
设0﹤x≤2时,f(x)=(2x)x;﹣2﹤x≤0时,f(x)=f(x+2)-3k。已知极限存在,求k的值。
把x→0﹢时的无穷小量α=∫0x2tantdt,β=∫0xcost2dt,γ=sint3dt按从高阶到低阶排列,则正确的排列次序是()
设二次型xTAx=ax12+2x22-x32+8x1x2+2bx1x3+2cx2x3,实对称矩阵A满足AB=0,其中B=。(Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换;(Ⅱ)判断矩阵A与B是否合同,并说明理由。
已知抛物线y=px2+qx(其中p<0,q>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.(Ⅰ)问p和q何值时,S达到最大值?(Ⅱ)求出此最大值.
考虑二元函数f(x,y)在点(x0,y0)处的下面四条性质:①连续②可微③fˊx(x0,y0)与fˊy(x0,y0)存在④fˊx(x,y)与fˊy(x,y)连续若用“PQ”表示可由性质P推出性质Q,则有(
设函数z=z(x,y)由方程F=0确定,其中F为可微函数,且F2’≠0.则()
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3α一2A2α.证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆;(Ⅱ)BTB是正定矩阵.
设常数k>0,函数在(0,+∞)内零点的个数为().
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
球的半径为5cm/s的速度均匀增长,问球的半径为50cm/s时,球的表面积和体积的增长速度各是多少?
随机试题
2岁男孩,突发高热,伴咳嗽,经抗生素治疗3天无效,体温仍高,咳嗽加重伴气促及烦躁。查体:体温39℃,呼吸62次/分,心率172次/分,X线胸片有圆形密度增深阴影伴气胸。如诊断明确最适宜的抗生素应首选
快速耐受性(tachyphylaxis)
健康父母产下一个视网膜母细胞瘤的孩子,则其余子女患此病的风险大约是
某新建高速公路项目总投资95亿元人民币,总长度约150公里,途经某贫困地区。项目资金来源如下:某国际金融机构贷款3亿美元,国内商业银行贷款50亿元人民币,其余由交通部门和当地政府解决。该国际金融机构要求其部分贷款用于从国外采购8套相同的公路专用设备,且设备
根据有关规定,标的证券除权、除息的,权证的发行人和保荐人应对权证的行权价格、行权比例作相应调整并及时提交证券交易所。()
金融现货交易实行保证金交易和逐日盯市制度,交易者并不需要在成交时拥有或借入全部资金或基础金融工具。()
债券回购交易的方式与股票交易的方式一致。()
甲某将自己的私房一间出租给其同事乙某居住,双方签订租赁协议,约定租期为2年,月租金1000元。其他事项未约定。在租赁期间,当事人以下行为合法的有()。
将下列几个句子组成语意连贯的语段,排序最恰当的一项是()。①还有那些对他们没有用处的野草,全铲除干净,虫子消灭光②在那里,除了人吃的粮食,土地再没有生长万物的权利③在许多地方,人们已经过于勤快,把大地改变得不像样子,只适合人自己居住④有人说
在山东“大汶口遗址”中,发现了世界上最早栽培的稻谷。()
最新回复
(
0
)