首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列曲面积分 (z+1)dxdy+xydzdx,其中为圆柱面x2+y2=a2上x≥0,0≤z≤1部分,法向量与x轴正向成锐角,为Oxy平面上半圆域x2+y2≤a2,x≥0部分,法向量与z轴正向相反.
求下列曲面积分 (z+1)dxdy+xydzdx,其中为圆柱面x2+y2=a2上x≥0,0≤z≤1部分,法向量与x轴正向成锐角,为Oxy平面上半圆域x2+y2≤a2,x≥0部分,法向量与z轴正向相反.
admin
2017-08-18
50
问题
求下列曲面积分
(z+1)dxdy+xydzdx,其中
为圆柱面x
2
+y
2
=a
2
上x≥0,0≤z≤1部分,法向量与x轴正向成锐角,
为Oxy平面上半圆域x
2
+y
2
≤a
2
,x≥0部分,法向量与z轴正向相反.
选项
答案
∑
1
∪∑
2
不封闭,添加辅助面后用高斯公式. ∑
3
:z=1,X
2
+y
2
≤a
2
,x≥0,法向量朝上. ∑
4
:x=0,一a≤y≤a,0≤z≤1,法向量与x轴正向相反. ∑
4
垂直xy平面与zx平面[*](z+1)dxdy+xydzdx=0. ∑
3
垂直zx平面[*] [*] ∑
1
,∑
2
,∑
3
,∑
4
围成区域Ω,用高斯公式[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Abr4777K
0
考研数学一
相关试题推荐
设函数f(x)在(0,+∞)内可导,f(x)>0,且求f(x);
设f(x)在[0,1]有连续导数,且f(0)=0,令,则必有
已知矩阵和试判断矩阵A和刀是否相似,若相似则求出可逆矩阵P,使P-1AP=B,若不相似则说明理由.
已知极限求常数a,b,c.
设平面上连续曲线y=f(x)(a≤x≤b,f(x)>0)和直线x=a,x=b及x轴所围成的图形绕x轴旋转一周所得旋转体的质心是(,0,0),则的定积分表达式是__________.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征向量;
设a与b都是常数且b>a>0.S所围成的实心环的空间区域为Ω,计算三重积分
设f(u)为奇函数,且具有一阶连续导数,S是由锥面两球面x2+y2+z2=1与x2+y2+z2=2(z>0)所围立体的全表面,向外.求
幂级数的和函数为__________.
计算下列各题:(Ⅰ)由方程xy=yx确定x=x(y),求;(Ⅱ)方程y-xey=1确定y=y(x),求y’’(x);(Ⅲ)设2x—tan(x一y)=sec2tdt,求.
随机试题
下列属于短期政府债券的是()。
单一配送中心的选址依据是()
根据双因素理论,()往往与职工的不满意关系情绪相关。
A.上关、下关、翳风B.三江、承泣、睛明C.大椎、身柱、灵台D.中枢、悬枢、中脘E.二眼百会、命门治疗犬腰胯疼痛、瘫痪宜选
某建设工程施工合同约定支付最终结算款的时间为2007年9月1日。由于建设单位迟迟不予支付,施工单位于2007年12月1日致函建设单位要求付款,建设单位答应最迟于2008年3月1日前付清工程尾款。由于建设单位仍然未能兑现承诺,施工单位诉建设单位工程款纠纷的诉
事件AB发生,意味着事件A与事件B()。
教师职业道德原则是教师职业道德体系的核心。()
下列属于民用危险物品的有( )。
假如你上班工作快一年了。自己一直觉得工作挺认真负责的,正期望领导表扬。一天领导将你叫去。非常恼火地说有人反映你工作没有做好,给单位丢了脸。你清楚地知道是自己的某位同事在领导面前说了你的坏话。请问。你此时怎么办?
在Java中,线程是______。
最新回复
(
0
)