首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=为A的特征向量. (1)求a,b及A的所有特征值与特征向量; (2)A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
设A=为A的特征向量. (1)求a,b及A的所有特征值与特征向量; (2)A可否对角化?若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2021-11-15
24
问题
设A=
为A的特征向量.
(1)求a,b及A的所有特征值与特征向量;
(2)A可否对角化?若可对角化,求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
(1)由Aα=λα得[*]解得a=1,b=1,λ=3. 由|λE-A|=[*]=λ(λ-2)(λ-3)=0得λ
1
=0,λ
2
=2,λ
3
=3. (2)因为A的特征值都是单值,所以A可相似对角化. 将λ
1
=0代入(λE-A)X=0得λ
1
=0对应的线性无关特征向量为α
1
=[*]; 将λ
2
=2代入(λE-A)X=0得λ
2
=2对应的线性无关特征向量为α
2
=[*]; 将λ
3
=3代入(λE-A)X=0得λ
3
=3对应的线性无关特征向量为α
3
=[*]; [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Aey4777K
0
考研数学二
相关试题推荐
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解。
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数。
设.求(I)(II)的基础解系。
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解。
a,b取何值时,方程组有解?
设A是正交矩阵,且|A|<0,证明:|E+A|=0.
设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,...,Ak-1a线性无关。
设,则a1,a2,a3,a4的一个极大线性无关组为______,其余的向量用极大线性无关组表示为_______.
设,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.判断矩阵A可否对角化。
随机试题
子宫颈早期浸润癌是指
A赛庚啶B西咪替丁C氯苯那敏D苯海拉明E组胺对组胺H1和H2受体均有作用的是
血吸虫感染的方式是()
局部麻醉药的作用机制为
一氧化碳在城市大气污染中含量最多,约占大气污染物的()。
( )违反国家规定运用资金,对其直接负责的主管人员和其它直接责任人员,处3年以下有期徒刑或者拘役,并处3万元以上30万元以下罚金。
复式政府预算一般由()组成。
不能归属于使存货达到目前场所和状态的其他支出。应在发生时计入当期损益,不得计人存货成本。()
在能力与知识、技能的关系上,下面说法不正确的是()
以下说法中,反映当代世界各国课程改革中所存在着的一些共同的发展趋势的是()。
最新回复
(
0
)