首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,g(x)连续,且f’(x)=lncosx+∫0xg(x-t)dt,=-2,则( ).
设f(x)二阶连续可导,g(x)连续,且f’(x)=lncosx+∫0xg(x-t)dt,=-2,则( ).
admin
2020-07-03
18
问题
设f(x)二阶连续可导,g(x)连续,且f’(x)=lncosx+∫
0
x
g(x-t)dt,
=-2,则( ).
选项
A、f(0)为f(x)的极大值
B、f(0)为f(x)的极小值
C、(0,f(0))为y=f(x)的拐点
D、f(0)不是f(x)的极值,(0,f(0))也不是y=f(x)的拐点
答案
C
解析
显然f’(0)=0,由
=-2得g(0)=0,g’(0)=-2.
由∫
0
x
g(x-t)dt
∫
0
x
g(u)du得f’(x)=lncosx+∫
0
x
g(u)du.
f"(x)=
+g(x),f"(0)=0.
由极限的保号性,存在δ>0,当0<|x|<δ时,
<0.
当x∈(0,δ)时,f"(x)<0;当x∈(-δ,0)时,f"(x)>0,
故(0,f(0))为y=f(x)的拐点,选(C).
转载请注明原文地址:https://kaotiyun.com/show/Ah84777K
0
考研数学二
相关试题推荐
在数中求出最大值.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n。
设常数a>0,函数g(x)在区间[一a,a]上存在二阶导数,且g"(x)>0.令h(x)=g(x)+g(一x),证明:在区间[0,a]上h’(x)≥0,且仅当x=0时,h’(x)=0;
A是3阶矩阵,α是3维列向量,使得P=(α,Aα,A2α)可逆,并且A3α=3Aα-2A2α.(1)求B,使得A=PBP-1.(2)求|A+E|.
若可微函数z=f(χ,y)在极坐标系下只是θ的函数,证明:χ=0(r≠0).
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,1]T,ξ2=[一1,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T,计算:(1)Anξ1;(2)Anβ.
设函数f(χ)二阶连续可导,f(0)=1且有f′(χ)+3∫0χf′(t)dt+2χ∫01f(tχ)dt+e-χ=0,求f(χ).
已知y1(x)和y2(x)是方程y’+p(x)y=0的两个不同的特解,则方程的通解为()
(04年)某种飞机在机场降落时.为了减少滑行距离.在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比
设函数y=f(x)在区间[0,1]上非负、存在二阶导数,且f(0)=0,有一块质量均匀的平板D,其占据的区域是曲线y=f(x)与直线x=1以及x轴围成的平面图形.用表示平板D的质心的横坐标.求证:若f’’(x)>0(0≤x≤1),则(如图1-10-4
随机试题
阿司匹林中因含有什么键而易水解
下列具有燥湿与利尿功效的补气药是
氯化铵是属于__________祛痰药,其祛痰作用主要是通过刺激__________,反射性地增加__________腺体分泌而祛痰。
王岚,16岁,高中学生。其外祖父去世时,曾在遗嘱中指明,给王岚25万元购买一处房屋,但未指定由谁来购买。王岚的父亲便以王岚的名义用该25万元买了一套商品房,下列论述正确的有哪些?()
下列民事法律行为的形式中,()可以把法律行为所产生的当事人双方的权利义务记载下来,作为一种固定凭据,有利于明确双方当事人的权利义务关系,有利于争议的防止和处理。
房地产经纪人员在查看房屋区位状况时,除需注意观察环境、景观外,还应查看房屋的()。
施工单位编制投标报价依据定额有()。
消费税和增值税都按退税率计算出口退税。()
导游员要劝阻游客自由活动的几种情况是()。
[*]
最新回复
(
0
)