首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明: r(A-aE)+r(A-bE)=n.
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明: r(A-aE)+r(A-bE)=n.
admin
2019-02-23
47
问题
设A是n阶矩阵,满足(A-aE)(A-bE)=0,其中数a≠b.证明:
r(A-aE)+r(A-bE)=n.
选项
答案
一方面,根据矩阵秩的性质⑦,由(A-aE)(A-bE)=0得到r(A-aE)+r(A-bE)≤n.另一方面,用矩阵的秩的性质③,有r(A-aE)+r(A-bE)≥r((A-aE)-(A-bE))=r((b-a)E)=n. 两个不等式结合,推出r(A-aE)+r(A-bE)=n.
解析
转载请注明原文地址:https://kaotiyun.com/show/Aij4777K
0
考研数学二
相关试题推荐
证明:
设f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f’’(x)-f(x)=0在(0,1)内有根.
设0<a<b,证明:
证明:
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)-f(y)|≤|arctanx-arctany|,又f(1)=0,证明:
如果A正定,则Ak,A-1,A*也都正定.
求双纽线r2=a2cos2θ(a>0)绕极轴旋转所成的旋转面的面积.
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列结论中正确的个数是()①φ[f(x)]必有间断点;②[φ(x)]2必有间断点;③φ(x)]没有间断点。
设有行列式已知1703,3159,975,10959都能被13整除,不计算行列式D,证明D能被13整除.
一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
随机试题
阅读下面一段文字,回答问题:东方的大梦没法子不醒了。炮声压下去马来与印度野林中的虎啸。半醒的人们,揉着眼,祷告着祖先与神灵;不大会儿,失去了国土、自由和权利。门外立着不同面色的人,枪口还热着。他们的长矛毒弩,花蛇斑彩的厚盾,都有什么用呢?连祖
女性,52岁。反复脓血便半年,3~4次/日,按痢疾治疗效果不明显。近1个月出现腹胀,伴阵发性腹痛。查体:消瘦,腹软、略膨隆,右下腹可触及一肿块,质较硬,轻压痛,尚可活动。首选的辅助检查为
A、甲型肝炎和乙型肝炎B、乙型肝炎和丙型肝炎C、丙型肝炎和戊型肝炎D、乙型肝炎和丁型肝炎E、甲型肝炎和戊型肝炎上列哪项是以接种乙肝疫苗为主要的防制措施
麻黄根的功效是( )。
中学化学教材中有大量数据,下列是某同学对数据的利用情况,其中正确的是()。
根据所给图表、文字资料回答81-85题。2008年,全国民政事业基本建设完成投资总额为66.6亿元,施工项目为3906个,完成投资总额比上年增长39.6%。其中国家投资26.6亿元,比上年增长83.4%。在投资总额中,用于优抚安置事业单位投资为9.6亿元
以下哪些主体享有立法提案权()
(2007下项管)绩效报告过程的输出是______。
从多个关系中抽取出所需要的属性组成新关系,应使用的操作是()。
在计算机中,每个存储单元都有一个连续的编号,此编号称为______。
最新回复
(
0
)