首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
admin
2019-01-19
109
问题
已知λ
1
,λ
2
,λ
3
是A的特征值,α
1
,α
2
,α
3
是相应的特征向量且线性无关。证明:如α
1
+α
2
+α
3
仍是A的特征向量,则λ
1
=λ
2
=λ
3
。
选项
答案
若α
1
+α
2
+α
3
,是矩阵A属于特征值λ的特征向量,则 A(α
1
+α
2
+α
3
)=λ(α
1
+α
2
+α
3
)。 又A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,于是有 (λ一λ
1
)α
1
+(λ一λ
2
)α
2
+(λ一λ
3
)α
3
=0。 因为α
1
,α
2
,α
3
线性无关,故λ一λ
1
=0,λ一λ
2
=0,λ一λ
3
=0,即λ
1
=λ
2
=λ
3
。
解析
转载请注明原文地址:https://kaotiyun.com/show/AnP4777K
0
考研数学三
相关试题推荐
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T,都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
已知二次型f(χ1,χ2,χ3)=5χ12+5χ22+cχ32-2χ1χ2+6χ1χ3-6χ2χ3的秩为2.(1)求参数c及f所对应矩阵的特征值;(2)指出方程f(χ1,χ2,χ3)=1表示何种二次曲面.
二次型f(χ1,χ2,χ3)=2χ12+χ22-4χ32-4χ1χ2-2χ2χ3的标准形是【】
从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为和.试证对任意满足a+b=1的常数a、b,T=都是μ的无偏估计.并确定a、b,使D(T)达到最小.
已知向量组(Ⅰ):β1=(0,1,-1)T,β2(a,2,1)T,β3=(6,1,0)T与向量组(Ⅱ):α1=(1,2,-3)T,α2=(3,0,1)T,α3=(9,6,-7)T具有相同的秩,且β2可由向量组(Ⅱ)线
若向量组α1=(1,-a,1,1)T,α2=(1,1,-a,1)T,α3=(1,1,1,-a)T线性无关,则实数a的取值范围是_______.
某商场销售某种型号计算机,只有10台,其中有3台次品.现已售出2台.某顾客又来到该商场购买此种型号计算机.若该顾客买4台,以X,Y表示4台计算机中次品数与正品数,求4台中次品数的数学期望,并求协方差cov(X,Y).
假设D={(x,y)|0≤x≤2,0≤y≤1},随机变量X和Y的联合分布是区域D上的均匀分布.考虑随机变量(1)求X和Y的相关系数ρ;(2)求U和V的相关系数γ.
随机试题
肿瘤细胞脱落后在体腔或空腔脏器内发生的转移称为
下列各项中,被称为“一源三歧”的是
社区卫生服务的骨干力量是
呼气储备量等于
贷款风险评价的基础是()
教育发挥主导作用的基础和前提是()。
我国南方和北方的地理分界线是()。
Mostparentsprizethediversitywithintheirchildren’spublicschools.Theyknowthatlearningtocooperateandexcelinadiv
对一个邀请招标的工程,参加投标的单位不得少于(65)家。
Forthispart,youareallowed30minutestowriteacompositiononthetopic:TheBestWaytoStayHealthy.Youshouldwriteat
最新回复
(
0
)