已知α1,α2,α3,α4是三维非零列向量,则下列结论 ①若α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关; ②若α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关; ③若r(α1,α1+α2,α2+α3)=r

admin2020-03-02  35

问题 已知α1,α2,α3,α4是三维非零列向量,则下列结论
①若α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;
②若α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;
③若r(α1,α12,α23)=r(α4,α14,α24,α34),则α4可以由α1,α2,α3线性表出。
其中正确的个数是(  )

选项 A、0。
B、1。
C、2。
D、3。

答案C

解析 因为α1,α2,α3,α4是三维非零列向量,所以α1,α2,α3,α4必线性相关。
    若α1,α2,α3线性无关,则α4必能由α1,α2,α3线性表示,可知结论①正确。
    令α1=(1,0,0)T,α2=(0,1,0)T,α3=(0,2,0)T,α4=(0,0,1)T,则α1,α2,α3线性相关,α2,α3,α4线性相关,但α1,α2,α4线性无关,可知结论②错误。
由于    (α1,α12,α23)→(α1,α2,α23)→(α1,α2,α3),
  (α4,α14,α24,α34)→(α4,α1,α2,α3)→(α1,α2,α3,α4),
    所以r(α1,α12,α23)=r(α1,α2,α3),r(α4,α14,α24,α34)=r(α1,α2,α3,α4),
    则当r(α1,α12,α23)=r(α4,α14,α24,α34)时,可得r(α1,α2,α3)=r(α1,α2,α3,α4),因此α4可以由α1,α2,α3线性表示。可知结论③正确。所以选C。
转载请注明原文地址:https://kaotiyun.com/show/AtS4777K
0

最新回复(0)