首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
admin
2018-08-03
36
问题
设λ
1
,λ
2
是矩阵A的两个不同的特征值,对应的特征向量分别为α
1
,α
2
,则α
1
,A(α
1
+α
2
)线性无关的充分必要条件是
选项
A、λ
1
≠0
B、λ
2
≠0
C、λ
1
=0
D、λ
2
=0
答案
B
解析
由λ
1
≠λ
2
及特征值的性质知α
1
,α
2
线性无关.显然,向量组{α
1
,A(α
1
+α
2
)}={α
1
,λ
1
α
1
+λ
2
α
2
}等价于向量组{α
1
,α
2
}.当λ
2
≠0时,它线性无关,当λ
2
=0时,它线性相关,故α
1
,A(α
1
+α
2
)线性无关→λ
2
≠0.
转载请注明原文地址:https://kaotiyun.com/show/Aug4777K
0
考研数学一
相关试题推荐
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4).证明:当n充分大时,随机变量Z=近似服从正态分布,并指出其分布参数.
设总体X~N(μ,σ2),X1,X2,…,Xn是来自总体的简单样本,其中参数μ,σ未知,令,则假设H0:μ=0的t检验使用统计量_________.
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设A,B都是n阶可逆矩阵,则().
设齐次线性方程组,其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
设随机变量X服从参数λ=的指数分布,令Y=min(X,2),求随机变量Y的分布函数F(y).
二次型f(x1,x2,x3)=5一2x1x2—6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的坐标变换.
已知线性方程组的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T,i=1,2,…,5.试问:(Ⅰ)α1能否由α2,α3,α4线性表出?(Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
随机试题
传感器一般由敏感元件、转换元件和()三部分组成。
中年男性,主诉全口牙酸痛,牙合面磨平,咀嚼无力,有耳部疼痛,来院就诊。检查:面下1/3短,牙列完整,全口牙广泛过度磨耗并超过生理范围。牙合面探硬,无变色,多处过敏点,咀嚼肌及关节有压痛,偶有关节弹响。除上述已有的检查外,重点补充检查
建设工程监理单位的服务对象是( )。
国有企业改造为公司制企业时,在评估基准日与建账日之间可能发生盈亏。下列各企业中,应享有或承担此盈亏的是()。
下面属于无效合同的是()。
Whatisyourfavoritecolor?Doyoulikeyellow,orangeorred?Ifyoudo,youmustbeanoptimist,aleader,anactivepemonwhoenjo
inversion
radionavigation
设矩阵Am×n,r(A)=m<n,Em为m阶单位矩阵,下述结论中正确的是().
在数据管理技术发展的三个阶段中,数据共享最好的是
最新回复
(
0
)