首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)求方程组AX=0的一个基础解系. (2)a,b,c为什么数时AX=B有解? (3)此时求满足AX=B的通解.
设A= (1)求方程组AX=0的一个基础解系. (2)a,b,c为什么数时AX=B有解? (3)此时求满足AX=B的通解.
admin
2021-11-09
47
问题
设A=
(1)求方程组AX=0的一个基础解系.
(2)a,b,c为什么数时AX=B有解?
(3)此时求满足AX=B的通解.
选项
答案
对AX=B的增广矩阵(A|B)作初等行变换化阶梯形矩阵: [*] 得到AX=0的同解方程组: [*] 求得基础解系:(-2,1,1,0)
T
,(1,0,0,1)
T
. (2)AX=B有解[*]r(A|B)=r(A)=2,得a=6,b=-3,c=3. (3)建立3个线性方程组,它们的系数矩阵都是A,常数列依次为B的各列.则X的各列依次是它们的解.它们的导出组都是AX=0,已经有了基础解系(-2,1,1,0)
T
,(1,0,0,1)
T
,只用再各求一个特解就可得到通解.可以一起用矩阵消元法求它们的特解: [*] 于是(3/2,3/2,0,0)
T
,(-3/2,3/2,0,0)
T
,(0,1,0,0)
T
依次是这3个方程组的特解.AX=B的通解为: [*] 其中c
1
,c
2
,c
3
,c
4
,c
5
,c
6
任意. 或者表示为: [*] 其中H为任意2×3矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/B0y4777K
0
考研数学二
相关试题推荐
求
设f(χ)=,g(χ)=∫0χsinz(χ-t)dt,则当χ→0时,g(χ)是f(χ)的().
设f(χ)二阶连续可导,且f(χ)-4∫0χtf(χ-t)dt=eχ,求f(χ).
设k>0,讨论常数k的取值,使f(χ)=χlnχ+k在其定义域内没有零点、有一个零点及两个零点.
设函数f(x)连续,则等于().
设f(x)可微,且满足,则f(x)=.
设三角形三边的长分别为a,b,c,此三角形的面积设为S,求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
确定常数a,b,c,使得.
设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,...,Ak-1a线性无关。
设当x→0时,f(x)=ax3+bx与是等价无穷小,则()
随机试题
宜以水飞后入药的药物是
焊接时每道焊缝厚度一般不超过()。
广义储蓄包括
胃与十二指肠的连接部位是
可以合并用药的情况包括
护士遵医嘱为溃疡性结肠炎患者行保留灌肠治疗,应协助患者采取的体位是
根据《招标投标法》的有关规定,招标人和中标人应当自中标通知书发出之日起()日内,按照招标文件和中标人的投标文件订立书面合同。
明朝在朝官员“上言宰执大臣美政才德者”,构成()
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)与f2(x),分布函数分别为F1(x)与F2(x),则
Readthearticlebelowaboutvideogamesmoveonlineandthequestionsontheoppositepage.Foreachquestion(13-18),markone
最新回复
(
0
)