首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)连续,以T为周期,令F(x)=∫0xf(t)dt,求证: (Ⅰ)F(x)一定能表成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)∫0Tf(x)dx; (Ⅲ)若又有f(x
设f(x)在(一∞,+∞)连续,以T为周期,令F(x)=∫0xf(t)dt,求证: (Ⅰ)F(x)一定能表成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)∫0Tf(x)dx; (Ⅲ)若又有f(x
admin
2019-02-26
24
问题
设f(x)在(一∞,+∞)连续,以T为周期,令F(x)=∫
0
x
f(t)dt,求证:
(Ⅰ)F(x)一定能表成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;
(Ⅱ)
∫
0
T
f(x)dx;
(Ⅲ)若又有f(x)≥0(x∈(一∞,+∞)),n为自然数,则当nT≤x<(n+1)
T
时,有
∫
0
T
f(x)dx≤∫
0
x
f(t)dt<(n+1)∫
0
T
f(x)dx.
选项
答案
(Ⅰ)即确定常数k,使得φ(x)=F(x)一kx以T为周期.由于 φ(x+T)=F(x+T)一k(x+T)=∫
0
x
f(t)dt—kx+∫
x
x+T
f(t)dt—kT =φ(x)+∫
0
T
f(t)dt一kT, 因此,取k=[*]∫
0
T
f(t)dt,φ(x)=F(x)一kx,则φ(x)是以T为周期的周期函数.此时 F(x)=[[*]f(t)dt]x+φ(x). (Ⅱ)不能用洛必达法则.因为[*]不存在,也不为∞.但∫
0
x
f(t)dt可表示 ∫
0
x
f(t)dt=[*]∫
0
T
f(t)dt+φ(x). φ(x)在(一∞,+∞)连续且以T为周期,于是,φ(x)在[0,T]有界,在(一∞,+∞)也有界.因此 [*] (Ⅲ)因f(x)≥0,所以当nT≤x<(n+1)T时, n∫
0
T
f(t)dt=∫
0
nT
f(t)dt≤∫
0
x
f(t)dt<∫
0
(n+1)T
f(t)dt=(n+1)∫
0
T
f(t)dt.
解析
转载请注明原文地址:https://kaotiyun.com/show/BF04777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导(0≤a<b≤).证明:存在ξ,η∈(a,b),使得
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,一3,0,则|B-1+2E|=_______.
设随机变量X在(1,4)上服从均匀分布,当X=x(1<x<4)时,随机变量Y的条件密度函数为fY|X(y|x)=(I)求Y的密度函数;(Ⅱ)求X,Y的相关系数;(Ⅲ)令Z=X—Y,求Z的密度函数.
求曲面积分xdydz+xzdzdx,其中,∑:x2+y2+z2=1(z≥0)取上侧.
设B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解.(I)求常数a,b.(Ⅱ)求BX=0的通解.
假设总体X服从参数为λ的泊松分布,X1,X2,…,Xn是取自总体X的简单随机样本,其均值为,方差为S2.已知为为λ的无偏估计,则a等于()
设随机变量X~U[1,7],则方程x2+2Xx+9=0有实根的概率为().
某人向同一目标独立重复射击,每次射击命中目标的概率为p(0
已知α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T。(Ⅰ)若α1,α2,α3线性相关,求a的值;(Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4;(Ⅲ)当a=3时,利用(Ⅱ)的结果,证明α1,α2,
设a>b>c>0,证明
随机试题
测定SLO抗体,可协助下列哪种疾病的诊断()
与鼻咽癌发病有关的生物因素是
关于当事人能力和正当当事人的表述,下列哪一选项是正确的?(2013年卷三第38题)
在国际人力资源管理的地区中心模式中,人力资源决策者为()。
据《邮史趣闻》记载,1492年8月3日,哥伦布率领船只,带着西班牙国王给中国皇帝的信件,准备前往中国。但他到达的是美洲大陆,因担心回不到欧洲,便把装有地图和信件的瓶子掷入大西洋。1815年,一位船长在直布罗陀海峡拾到这个瓶子,这就是世界有名的第一次“瓶邮传
公安工作的基本方针是()。
Sevenyearsago,whenIwasvisitingGermany,Imetwithanofficialwhoexplainedtomethatthecountryhadaperfectsolution
Lawyersarelessthan1%ofAmericanadults,【C1】______theyarewell-representedingovernment.Boththepresidentandthevice-p
Whydoestheauthorsay:"hiscarbecomestheextensionofhispersonality”?
Anewbiotechnologyprocedurethatcouldbecomecommerciallyavailableinaslittleastwotofouryearsis"transgenosis",whic
最新回复
(
0
)