首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)连续,以T为周期,令F(x)=∫0xf(t)dt,求证: (Ⅰ)F(x)一定能表成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)∫0Tf(x)dx; (Ⅲ)若又有f(x
设f(x)在(一∞,+∞)连续,以T为周期,令F(x)=∫0xf(t)dt,求证: (Ⅰ)F(x)一定能表成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ)∫0Tf(x)dx; (Ⅲ)若又有f(x
admin
2019-02-26
55
问题
设f(x)在(一∞,+∞)连续,以T为周期,令F(x)=∫
0
x
f(t)dt,求证:
(Ⅰ)F(x)一定能表成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;
(Ⅱ)
∫
0
T
f(x)dx;
(Ⅲ)若又有f(x)≥0(x∈(一∞,+∞)),n为自然数,则当nT≤x<(n+1)
T
时,有
∫
0
T
f(x)dx≤∫
0
x
f(t)dt<(n+1)∫
0
T
f(x)dx.
选项
答案
(Ⅰ)即确定常数k,使得φ(x)=F(x)一kx以T为周期.由于 φ(x+T)=F(x+T)一k(x+T)=∫
0
x
f(t)dt—kx+∫
x
x+T
f(t)dt—kT =φ(x)+∫
0
T
f(t)dt一kT, 因此,取k=[*]∫
0
T
f(t)dt,φ(x)=F(x)一kx,则φ(x)是以T为周期的周期函数.此时 F(x)=[[*]f(t)dt]x+φ(x). (Ⅱ)不能用洛必达法则.因为[*]不存在,也不为∞.但∫
0
x
f(t)dt可表示 ∫
0
x
f(t)dt=[*]∫
0
T
f(t)dt+φ(x). φ(x)在(一∞,+∞)连续且以T为周期,于是,φ(x)在[0,T]有界,在(一∞,+∞)也有界.因此 [*] (Ⅲ)因f(x)≥0,所以当nT≤x<(n+1)T时, n∫
0
T
f(t)dt=∫
0
nT
f(t)dt≤∫
0
x
f(t)dt<∫
0
(n+1)T
f(t)dt=(n+1)∫
0
T
f(t)dt.
解析
转载请注明原文地址:https://kaotiyun.com/show/BF04777K
0
考研数学一
相关试题推荐
设A为m阶可逆矩阵,B为n阶可逆矩阵,|A|=a,|B|=b,则等于().
设f(x)二阶连续可导,g(x)连续,且f’(x)=lncosx+∫0xg(x—t)dt,则().
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2-α3=(2,0,-5,4)T,α2+2α3=(3,12,3,3)T,α3-2α1=(2,4,1,-2)T,则方程组Ax=b的通解x=()
(2014年)设∑为曲面z=x2+y2(z≤1)的上侧,计算曲面积分
(2017年)微分方程y"+2y′+3y=0的通解为___________。
(2006年)将函数展开成x的幂级数。
一批产品共10件,其中7件正品,3件次品,每次从中任取一件,求下面两种情形下直到取到正品为止所需抽取次数的概率分布:(1)每次取出后再放回去;(2)每次取出后不放回.
设f(x)=则下列结论(1)x=1为可去间断点.(2)x=0为跳跃间断点.(3)x=-1为无穷间断点.中正确的个数是
随机试题
下列词典属于语言或语文词典的是()
实现意识对物质反作用的根本途径是
男,25岁。早晨醒来四肢乏力,不能起床。查体:四肢肌张力减低,腱反射减弱,感觉正常,病理征(-)。血清CK水平正常。心电图示U波出现。该患者最可能的诊断是
绝对地租的实质和来源是农业工人创造的()。
发行分离交易的可转换公司债券的上市公司,其最近3个会计年度经营活动产生的现金流量净额平均应()(若其最近3个会计年度加权平均净资产收益率平均不低于6%,则可不作此现金流量要求)。
创造性与智力的基本关系表现在()等几个方面。
人们对自己或他人活动及其结果的原因作出的解释和评价叫作()。
某旅游团共48人在导游推荐的购物点抢购特产,每人都进行了购买,同时购买了马桶和吹风机的有12位,同时购买了电饭煲和马桶的有13位,同时购买了吹风机和电饭煲的有8位,有3位购买了以上三种商品。则仅购买1种商品的顾客有()位
如果键盘上的( )指示灯亮着,表示此时输入英文的大写字母。
Thelocalnewspaperhasa______of100,000copiesaday.
最新回复
(
0
)