首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设函数y=f(x)具有二阶导数,且f′(x)>0,f″(x)>0,Δx为自变量x在点x0处的增量,Δy与dy分别为f(x)在点x0处对应的增量与微分,若Δx>0,则( ).
[2006年] 设函数y=f(x)具有二阶导数,且f′(x)>0,f″(x)>0,Δx为自变量x在点x0处的增量,Δy与dy分别为f(x)在点x0处对应的增量与微分,若Δx>0,则( ).
admin
2019-04-05
100
问题
[2006年] 设函数y=f(x)具有二阶导数,且f′(x)>0,f″(x)>0,Δx为自变量x在点x
0
处的增量,Δy与dy分别为f(x)在点x
0
处对应的增量与微分,若Δx>0,则( ).
选项
A、0<dy<Δy
B、0<Δy<dy
C、Δy<dy<0
D、dy<Δy<0
答案
A
解析
题设条件有明显的几何意义可用图示法求解.
解一 仅(A)入选.由f′(x)>0,f″(x)>0知,函数f(x)单调增加,曲线y=f(x)是凹向.作函数y=f(x)的图形,如图1.2.5.6所示.
由图中易看出,当Δx>0时,有Δy>dy=f′(x
0
)dx=f′(x
0
)Δx>0.
解二 因Δy=f(x
0
+Δx)一f(x
0
)为函数差的形式,这警示我们可用拉格朗日中值定理Δy=f(x
0
+Δx)一f(x
0
)=f′(ξ)Δx,x
0
<ξ<x
0
+Δx求之.因f″(x)>0,故f′(x)单调增加,有f′(ξ)>f′(x
0
).又Δx>0,则
Δy=f′(ξ)Δx>f′(x
0
)Δx=dy>0, 即0<dy<Δy.
转载请注明原文地址:https://kaotiyun.com/show/BJV4777K
0
考研数学二
相关试题推荐
求f(x)=3x带拉格朗日余项的n阶泰勒公式.
计算下列反常积分:
已知ξ=[1,1,一1]T是矩阵A=的一个特征向量.(1)确定参数a,b及ξ对应的特征值λ;(2)A是否相似于对角阵,说明理由.
求
求微分方程y"+2y’-3y=e-3x的通解.
设闭区域D:x2+y2≤v,x≥0,f(x,y)为D上的连续函数,且求f(x,y).
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|一f(t)dt当F(x)的最小值为f(A)一a2一1时,求函数f(x)。
(2012年)曲线y=渐近线的条数为【】
(2005年试题,一)
(2002年)已知矩阵A=[α1α2α3α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Aχ=β的通解.
随机试题
营养不良患儿哪个部位的皮下脂肪最先减少
从一张1952mm×568mm的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。按照上面的过程不断地重复,最后一共可剪得正方形多少个?()
桥梁模数式伸缩装置力学性能包括()。
住宅内卧室、起居室的净高最少不能低于多少米?()
关于注册会计师验资的说法,正确的是()。[2016年11月真题]
“错误往往是正确的先导”所体现的哲理是()。
明代中后期,苏州、松江、嘉兴、()、杭州五府,堪称江南最繁华的城市。
下列情形属于自首的是()。
结合材料回答问题:材料1在比利时首都布鲁塞尔最近举行的一个循环经济研讨会上,一个其貌不杨的机器人引起了参会人员的极大兴趣。机器人的全称是“新型有机垃圾可持续处理机器”,绰号“吃垃圾机”。“吃垃圾机”看上去像一个白色的长方形盒子,体积相
Itwasnotsolongagothatparentsdroveateenagertocampus,saidatearfulgoodbyeandreturnedbackhometo【M1】______wait
最新回复
(
0
)