首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
admin
2018-09-20
114
问题
求二元函数z=f(x,y)=x
2
y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
选项
答案
由方程组[*]得线段x=0(0≤y≤6),点(4,0),(2,1).而点(4,0)及线段x=0(0≤y≤6)在D的边界上,只有点(2,1)在D内部,可能是极值点.又 f
xx
"=8y一6xy一2y
2
,f
xy
"=8x一3x
2
-4xy,f
yy
"=一2x
2
. 在点(2,1)处,有 [*] 因为B
2
一AC=一32<0,且A<0,所以点(2,1)是z=f(x,y)的极大值点,极大值f(2,1)=4. 在D的边界x=0(0≤y≤6)及y=0(0≤x≤6)上,f(x,y)=0. 在边界x+y=6上,y=6-x.代入f(x,y)中得z=2x
3
-12x
2
(0≤x≤6). 由z’=6x
2
一24x=0得x=0或x=4.在边界x+y=6上对应x=0,4,6处z的值分别为:z|
x=0
=(2x
3
一12x
2
)|
x=0
=0,z|
x=4
=(2x
3
一12x
2
)|
x=4
=一64,z|
x=6
=(2x
3
—12x
2
)|
x=6
=0.I 因此知z=f(x,y)在边界上的最大值为0,最小值为f(4,2)=一64. 将边界上最大值和最小值与驻点(2,1)处的值比较得,z=f(x,y)在闭区域D上的最大值为f(2,1)=4,最小值为f(4,2)=一64.
解析
转载请注明原文地址:https://kaotiyun.com/show/BRW4777K
0
考研数学三
相关试题推荐
已知A=能对角化,求An.
设f(x)在(-∞,+∞)有一阶连续导数,且f(0)=0并存在f’’(0).若求F’(x),并证明F’(x)在(-∞,+∞)上连续.
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式;(Ⅱ
已知A暑3阶不可可矩阵,-1和2是A的特征值.B=A2-A-2E,求B的特征值,并问B能否相似对角化,并说明理由.
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f’’(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
设α1=(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设A为n阶实对称矩阵,下列结论不正确的是().
设(I)求f’(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令考察f’(xn)是正的还是负的,n为非零整数;(Ⅳ)证明:对,f(x)在(一δ,0]上不单调上升,在[0,8]上不单调下降.
(05年)设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
随机试题
国际政治
根据《劳动合同法》的规定,劳动者有下列哪些情形之一的,用人单位可以解除劳动合同()
最简单的甘油磷脂是
男,32岁。交通事故致头面部复合伤。伤后昏迷45min,造成吸人性窒息,正确的处理方法是
男,35岁。从高处跳下时,双下肢顿时感到无力。
私营企业主王某办公室的一台DVD播放机无法正常使用,遂通知工作人员刘某拿出去扔掉。刘某将该播放机修理好后拿回家使用。王某得知该播放机能够正常使用后,要求刘某返还。关于该播放机归属的说法,正确的是()。(2010年单项选择第5题)
下列不属于房地产经纪机构人力资源管理中的内部选拔的优点的是()。
在现行公开招标方式下,国债的销售价格是()。
辩证的否定观认为新事物必然取代旧事物,这是因为
若对n个元素进行直接插入排序,则进行第i趟排序过程前,有序表中的元素个数为______。
最新回复
(
0
)