首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=,若存在3阶非零矩阵B,使AB=0,则( ).
设矩阵A=,若存在3阶非零矩阵B,使AB=0,则( ).
admin
2020-10-21
49
问题
设矩阵A=
,若存在3阶非零矩阵B,使AB=0,则( ).
选项
A、a=1时,B的秩必为1.
B、a=1时,B的秩必为2.
C、a=一3时,B的秩必为1.
D、a=一3时,B的秩必为2.
答案
C
解析
因为AB=O,A≠O,B≠O,所以
R(A)+R(B)≤3,|A|=|B|=0,
由 |A|=
=一(a一1)
2
(a+3),
得a=1或a=一3.
当a=1时,R(A)=1,则R(B)≤2,由B≠0,得R(B)≥1,故R(B)=1或R(B)=2.
当a=一3时,R(A)=2,则R(B)≤1,由B≠0,得R(B)≥1,故R(B)=1.应选C.
转载请注明原文地址:https://kaotiyun.com/show/BU84777K
0
考研数学二
相关试题推荐
设f(x)在(-∞,+∞)上有定义,x0≠0为函数f(x)的极大值点,则().
设A是三阶实对称矩阵,存在可逆矩阵P=,使得P-1AP=且A*a=μa.求常数a,b的值及μ.
已知y=u(x)x是微分方程的解,则在初始条件|x=2下,上述微分方程的特解是y=_______.
(13年)设奇函数f(x)在[-1,1]上具有2阶导数,且f(1)=1.证明:(I)存在ξ∈(0,1),使得f’(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f/"(η)+f’(η)=1.
[2003年]设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(x>0.若极限存在,证明:在(a,b)内存在点ξ,使(b2-a2).
(1999年)设f(χ)是区间[0,+∞)上单调减少且非负的连续函数,a1=f(k)-∫1nf(χ)dχ(n=1,2,…),证明数列{an}的极限存在.
求原点到曲面(x—y)2+z2=1的最短距离。
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
设f(χ)为非负连续函数,且满足f(χ)∫0χf(χ-t)dt=sin4χ求f(χ)在[0,]上的平均值.
设5χ12+χ22+tχ32+4χ1χ2-2χ1χ3-2χ2χ3为正定二次型,则t的取值范围是_______.
随机试题
以下属于城市基础设施管理的专业机构的是【】
Todayanyonewillacceptmoneyinexchangeforgoodsandservices.Peopleusemoneytobuyfood,furniture,books,bicyclesand
事物发展的基本方向是由()
腹股沟深环的解剖位置是
医学伦理学的公正原则,是指
以下哪项受到城市性质的影响较小?
在IE的“程序”选项卡中选中“检查IE是否为默认浏览器”复选框,则()。
齐老师上课时喜欢全程用多媒体,他认为这是一种很好的教学方式。不过学生却认为这样做的效果虽然很好,但是用多媒体教学速度太快了,跟不上。如果你是齐老师,你会()。
有两只粗细不同的蜡烛,细蜡烛的长度是粗蜡烛的2倍,细蜡烛点完需1个小时,粗蜡烛点完需2小时。有一次停电,将这两支蜡烛同时点燃,来电时,发现两支蜡烛剩下的长度相同。那么,停电多长时间?
2004年9月12日,法国里昂信贷银行面对其他银行的询价,报出的加拿大元的汇价为USD1=CAD1.1793,该汇率标价法为()。
最新回复
(
0
)