首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X,Y相互独立,已知X在[0,1]上服从均匀分布,Y服从参数为1的指数分布.求 (Ⅰ)随机变量Z=2X+Y的密度函数; (Ⅱ)Cov(Y,Z),并判断X与Z的独立性. 5.设二维随机变量(U,V)~N(2,2;4,1;1/2),记X=U-bY=V
设随机变量X,Y相互独立,已知X在[0,1]上服从均匀分布,Y服从参数为1的指数分布.求 (Ⅰ)随机变量Z=2X+Y的密度函数; (Ⅱ)Cov(Y,Z),并判断X与Z的独立性. 5.设二维随机变量(U,V)~N(2,2;4,1;1/2),记X=U-bY=V
admin
2018-06-15
56
问题
设随机变量X,Y相互独立,已知X在[0,1]上服从均匀分布,Y服从参数为1的指数分布.求
(Ⅰ)随机变量Z=2X+Y的密度函数;
(Ⅱ)Cov(Y,Z),并判断X与Z的独立性.
5.设二维随机变量(U,V)~N(2,2;4,1;1/2),记X=U-bY=V.
选项
答案
(X,Y)的联合密度 f(x,y)=f
X
(x)f
Y
(y) [*] (Ⅰ)应用独立和卷积公式 f
Z
(z)=∫
-∞
+∞
f
X
(x)f
Y
(z-2x)dx. 当z<0时,f
Z
(z)=0;当0≤z<2时,z-2x>0,x<z/2, f
Z
(z)=∫
0
z/2
e
-(z-2x)
dx=1/2(1-e
-z
) 当z≥2时,z-2x≥0,x≤1, f
Z
(z)=∫
0
1
e
-(z-2x)
dx=e
-z
/2(e
2
-1). 于是Z的概率密度为 [*] (Ⅱ)由于X,Y相互独立,所以Cov(X,Y)=0. Cov(Y,Z)=Cov(Y,2X+Y)=2Cov(X,Y)+DY=0+1=1 由于Cov(X,Z)=Cov(X,2X+Y)=2DX+Cov(X,Y)=1/6≠0,所以X与Z不独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/BXg4777K
0
考研数学一
相关试题推荐
设x∈(0,1),证明下面不等式:(1+x)in2(1+x)<x2;
计算不定积分
设A=设A是二阶方阵,当k>2时,证明:Ak=O的充分必要条件为A2=O.
设某曲线L的线密度μ=x2+y2+z2,其方程为x=e’cost,y=e’sint,z=,-∞<t≤0.求曲线L对Oz轴的转动惯量J;
设曲线积分∫L[f(x)-ex]sinydx-f(x)cosydy与路径无关,其中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于()
已知3阶矩阵A有特征值λ1=1,λ2=2,λ3=3,则2A*的特征值是()
在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群总数为N,在t=0时刻已掌握新技术的人数为x0,在任一时刻t已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例系数k>0,
设X1,X2,X3,X4,X5为来自正态总体X~N(0,4)的简单随机样本,Y=a(X1—2X2)2+b(3X3—4X4)2+cX52,且Y~χ2(n),则a=___________,b=___________,c=___________,n=______
证明条件极值点的必要条件(8.9)式,并说明(8.9)式的几何意义.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3.又设β=α1+α2+α3+α4,求AX=β的通解.
随机试题
正常心脏后前位不易观察到的是
右下腹疼痛拒按,或右足屈而不伸,伸则痛甚,甚则局部肿痞,或时时发热,自汗恶寒,舌苔薄腻而黄,脉滑数。方剂选用
气雾剂的优点有()。
《建设工程安全生产管理条例》制定的基本法律依据包括()。
若企业不打算享受现金折扣优惠,则应尽量推迟付款的时间。()
如果会计师事务所非审计项目组成员的主要近亲属,通过继承从审计客户获得直接经济利益,则()。
《与朱元思书》是八年级下册第五单元的一篇课文,如果让你给八年级的学生执教这篇课文,你会怎么做呢?请按要求完成后面的题目:附:《与朱元思书》课文与朱元思书①
缺陷补偿,是指个体在充当社会角色时不可能事事成功,当自我角色目标失败时,常常可能会对相关的社会角色的重要性做重新评价,从而进行自我定义以补偿自己角色缺陷。根据上述定义,下列属于缺陷补偿的是()。
求|cos(x+y)|dxdy,其中D={(x,y)|
A、Assoonasshestarteduniversity.B、Aftershedidsomeresearch.C、Aftershetookaliteraturecourse.D、Whenshemetagood
最新回复
(
0
)