首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(Ⅰ)为 又已知某齐次线性方程组(Ⅱ)的通解为 k1[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共
设四元齐次线性方程组(Ⅰ)为 又已知某齐次线性方程组(Ⅱ)的通解为 k1[0,1,1,0]T+k2[一1,2,2,1]T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共
admin
2018-09-25
18
问题
设四元齐次线性方程组(Ⅰ)为
又已知某齐次线性方程组(Ⅱ)的通解为
k
1
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
.
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
(1)线性方程组(Ⅰ)的解为 [*] 得所求基础解系 ξ
1
=[0,0,1,0]
T
,ξ
2
=[-1,1,0,1]
T
. (2)将方程组(Ⅱ)的通解代入方程组(Ⅰ),得 [*] =>k
1
=-k
2
.方程组(Ⅰ)和(Ⅱ)有 非零公共解,且为 x=-k
2
[0,1,1,0]
T
+k
2
[-1,2,2,1]
T
=k
2
[-1,1,1,1]
T
=k[-1,1,1,1]
T
,其中k为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Beg4777K
0
考研数学一
相关试题推荐
已知A,B及A,C都可交换,证明A,B,C是同阶矩阵,且A与BC可交换.
有100道单项选择题,每个题中有4个备选答案,且其中只有一个答案是正确的.规定选择正确得1分,选择错误得0分.假设无知者对于每一个题都是从4个备选答案中随机地选答,并且没有不选的情况,计算他能够超过40分的概率.
设随机变量序列X1,X2,…,Xn,…相互独立,EXi=μi,DXi=2,i=1,2,…,则当n→∞时,(Xi一μi)依概率收敛于__________.
将函数f(x)=sin(x+a)展开成x的幂级数,并求收敛域.
设α1=(1,1)T,α2=(1,0)T和β1=(2,3)T,β2=(3,1)T,求由α1,α2到β1,β2的过渡矩阵.
设X1,X2,…,Xn是取自正态总体X的简单随机样本,EX=μ,DX=4,试分别求出满足下列各式的最小样本容量n:(Ⅰ)P{|一μ|≤0.10}≥0.90;(Ⅱ)D≤0.10;(Ⅲ)E|-μ|≤0.10.
设(Ⅰ)求f′(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令xn=,考察f′(x0)是正的还是负的,n为非零整数;(Ⅳ)证明:对δ>0,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
已知A,B均是3阶非零矩阵,且A2=A,B2=B,AB=BA=0,证明0和1必是A与B的特征值,并且若α是A关于λ=1的特征向量,则α必是B关于λ=0的特征向量.
设4元齐次线性方程组(Ⅰ)为而已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,0+8)T.(1)求方程组(Ⅰ)的一个基础解系;(2)当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?若有,
随机试题
慢性活动性肝炎主要诊断依据是
背景某建筑工程,建筑面积145200m2,现浇钢筋混凝土框架一剪力墙结构,地下3层,地上60层,基础埋深18.6m,主楼底板厚3.0m,底板面积6036m2,底板混凝土强度设计为C35/P12,底板施工时施工单位制定了底板施工方案,采用溜槽配合混凝土地泵
下列有关应付账款的说法中,正确的是()。
证券承销业务只能采取代销方式。()
(2017年)甲股份有限公司(简称“甲公司”)于2015年3月1日在深圳证券交易所(简称“深交所”)首次公开发行股票并上市(简称“IPO”)。2016年1月,中国证监会(简称“证监会”)接到举报称,甲公司的招股说明书中有财务数据造假行为。证监会调查发现,
在学习鲁迅先生的《中国人失掉自信力了吗》时,教师联系了其他几篇已经学过的议论文,来帮助学生进行议论文阅读,下面不适合的是()。
2009年8月1日,人民币对美元的汇率为1美元兑换6.8585元人民币。到了10月2日,这一数字变化为1美元兑换6.1009元人民币。在其他条件不变的情况下,这意味着()。
不能正确表示条件“两个整型变量A和B之一为0,但不能同时为0”的布尔表达式是()。
Growingolderisinevitable.However,asyougetold,careinoldagebecomesmoreimportant.Manypeoplewronglybelievethatw
A、Dianabelievestheairisnotlikelytobecleaner.B、Dianathinksthediesel(柴油机)busisfreeofpollutionnow.C、Dianahas
最新回复
(
0
)