首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,如果它们的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,求r(α1,α2,α3,α4+α5).
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,如果它们的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,求r(α1,α2,α3,α4+α5).
admin
2016-10-26
27
问题
已知向量组(Ⅰ)α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ)α
1
,α
2
,α
3
,α
5
,如果它们的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,求r(α
1
,α
2
,α
3
,α
4
+α
5
).
选项
答案
由r(Ⅰ)=r(Ⅱ)=3,知α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,故α
4
可由α
1
,α
2
,α
3
线性表出.设α
4
=l
1
α
1
+l
2
α
2
+l
3
α
3
. 如果α
4
+α
5
能由α
1
,α
2
,α
3
线性表出,设α
4
+α
5
=k
1
α
1
+k
2
α
2
+k
3
α
3
,则 α
5
=(k
1
一l
1
)α
1
+(k
2
一l
2
)α
2
+(k
3
一l
3
)α
3
. 于是α
5
=可由α
1
,α
2
,α
3
线性表出,即α
1
,α
2
,α
3
,α
5
线性相关,与已知r(Ⅲ)=4相矛盾.所以α
4
+α
5
不能用α
1
,α
2
,α
3
线性表出,由秩的定义知r(α
1
,α
2
,α
3
,α
4
+α
5
)=4.
解析
由于r(Ⅰ)=3,得α
1
,α
2
,α
3
线性无关,那么向量组α
1
,α
2
,α
3
,α
4
+α
5
的秩至少是3,能否是4?关键就看α
4
+α
5
能否用α
1
,α
2
,α
3
线性表出,或者看向量组α
1
,α
2
,α
3
,α
4
+α
5
是线性相关还是线性无关.
转载请注明原文地址:https://kaotiyun.com/show/Bmu4777K
0
考研数学一
相关试题推荐
[*]
[*]
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
在某公共汽车站甲、乙、丙三人分别等1,2,3路公共汽车.设每个人等车时间(单位:min)均服从[0,5]上的均匀分布,求三人中至少有两人等车时间不超过2min的概率.
求下列已知曲线围成的平面图形绕指定的轴旋转而形成的旋转体的体积:(1)xy=a2,y=0,x=a,x=2a(a>0)绕x轴和y轴;(2)x2+(y-2)2=1,绕x轴;(3)y=lnx,y=0,x=e,绕x轴和y轴;(4)x2+y2=4,
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤20;
设总体X的概率密度为f(x)=1/2e-丨x丨(-∞
根据题意,令[*]将点(2,1,1)代入,上式=(1,1,1).
设(X1,X2,…,Xn)(n≥2)为标准正态总体,X的简单随机样本,则().
(1994年)设求在的值.
随机试题
下列不属于贺敬之抒情短诗的是()
患者,女性。系口腔溃疡3月余,双侧小阴唇出现对称性溃疡,溃疡呈椭圆形,疼痛明显皮损境界清楚,中心淡黄色坏死基底,周围为鲜红色晕。双侧双下肢、躯干部见散在的毛囊炎样皮损,部分痤疮样改变。实验室检查提示血常规、尿常规正常。ESR34mm/h。本病累及消化
下列细胞属于CD4+亚群的是
缩窄性心包炎可出现冠心病可出现
尽管流动比率可以反映企业的短期偿债能力,但有的企业流动比率较高,却没有能力支付到期的应付账款。()
某位教师曾经采用了很多教育方法,坚持不懈地帮助班上一位性格孤僻、行为散漫、对学习不感兴趣的孩子。一次偶然的机会,她看到了《捣蛋鬼日记》,认真阅读后,对儿童的身心发展有了新的理解,开始反省自己对这个孩子的教育。当她发现孩子的绘画特长后,积极鼓励他发展绘画能力
请从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
“北麦南稻,南船北马”是以什么为分界线?()
n元实二次型正定的充分必要条件是()
数据结构包括数据的逻辑结构、数据的【】以及对数据的操作运算。
最新回复
(
0
)