首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,如果它们的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,求r(α1,α2,α3,α4+α5).
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,如果它们的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,求r(α1,α2,α3,α4+α5).
admin
2016-10-26
38
问题
已知向量组(Ⅰ)α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ)α
1
,α
2
,α
3
,α
5
,如果它们的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,求r(α
1
,α
2
,α
3
,α
4
+α
5
).
选项
答案
由r(Ⅰ)=r(Ⅱ)=3,知α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,故α
4
可由α
1
,α
2
,α
3
线性表出.设α
4
=l
1
α
1
+l
2
α
2
+l
3
α
3
. 如果α
4
+α
5
能由α
1
,α
2
,α
3
线性表出,设α
4
+α
5
=k
1
α
1
+k
2
α
2
+k
3
α
3
,则 α
5
=(k
1
一l
1
)α
1
+(k
2
一l
2
)α
2
+(k
3
一l
3
)α
3
. 于是α
5
=可由α
1
,α
2
,α
3
线性表出,即α
1
,α
2
,α
3
,α
5
线性相关,与已知r(Ⅲ)=4相矛盾.所以α
4
+α
5
不能用α
1
,α
2
,α
3
线性表出,由秩的定义知r(α
1
,α
2
,α
3
,α
4
+α
5
)=4.
解析
由于r(Ⅰ)=3,得α
1
,α
2
,α
3
线性无关,那么向量组α
1
,α
2
,α
3
,α
4
+α
5
的秩至少是3,能否是4?关键就看α
4
+α
5
能否用α
1
,α
2
,α
3
线性表出,或者看向量组α
1
,α
2
,α
3
,α
4
+α
5
是线性相关还是线性无关.
转载请注明原文地址:https://kaotiyun.com/show/Bmu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
已知某产品的边际成本和边际收益函数分别为Cˊ(q)=q2-4q+6,Rˊ(q)=105—2q,固定成本为100,其中q为销售量,C(q)为总成本,R(q)为总收益,求最大利润.
差分方程yt+1-yt=t2t的通解为_______.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求.
求极限1+cot2x.
随机试题
教育起源于儿童对成人的无意识模仿。
中、重度营养不良治疗不恰当的是
预防肺结核最关键、最有效的措施是
以下行为无效的是()
f(x)在点x0处的左、右极限存在且相等是f(x)在点x0处连续的()。
根据《防治海洋工程建设项目污染损害海洋环境管理条例》,关于海洋工程污染物排放管理的规定,下列说法中,正确的是()。
一般墙体大模板在常温条件下,混凝土强度达到()N/mm2.I可拆除。
下列不属于加涅学习水平分类中的学习类型的是()
下列叙述中,正确的是()。
33.Myfatherisn’t__________asheWaslastWeek.
最新回复
(
0
)