首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立. ①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关. ②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
admin
2020-03-18
62
问题
设α
1
,α
2
,α
3
,α
4
都是n维向量.判断下列命题是否成立.
①如果α
1
,α
2
,α
3
线性无关,α
4
不能用α
1
,α
2
,α
3
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
②如果α
1
,α
2
线性无关,α
3
,α
4
都不能用α
1
,α
2
线性表示,则α
1
,α
2
,α
3
,α
4
线性无关.
③如果存在n阶矩阵A,使得Aα
1
,Aα
2
,Aα
3
,Aα
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
④如果α
1
=Aβ
1
,α
2
=Aβ
2
,α
3
=Aβ
3
,α
4
=Aβ
4
,其中A可逆,β
1
,β
2
,β
3
,β
4
线性无关,则α
1
,α
2
,α
3
,α
4
线性无关.
其中成立的为________.
选项
答案
①,③,④.
解析
②明显不对,例如α
3
不能用α
1
,α
2
线性表示,而α
3
=α
4
时,α
3
,α
4
都不能用α
1
,α
2
线性表示但是α
1
,α
2
,α
3
,α
4
线性相关.
③容易用秩说明:Aα
1
,Aα
2
,Aα
3
,Aα
4
的秩即矩阵(Aα
1
,Aα
2
,Aα
3
,Aα
4
)的秩,而(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=A(α
1
,α
2
,α
3
,α
4
),由矩阵秩的性质④,
r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)≤r(α
1
,α
2
,α
3
,α
4
).Aα
1
,Aα
2
,Aα
3
,Aα
4
无关,秩为4,于是α
1
,α
2
,α
3
,α
4
的秩也一定为4,线性无关.
④也可从秩看出:A可逆时,r(α
1
,α
2
,α
3
,α
4
)=r(Aα
1
,Aα
2
,Aα
3
,Aα
4
)=4.
转载请注明原文地址:https://kaotiyun.com/show/BqD4777K
0
考研数学三
相关试题推荐
设总体X的概率密度为其中θ是未知参数(0
设总体X的分布函数为其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:β的矩估计量;
已知方程组(1)与方程(2)x1+5x3=0,则(1)与(2)的公共解是___________。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
已知fn(x)满足(n为正整数),且。求函数项级数的和函数。
证明极限不存在.
在椭圆的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积最小.
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是()
设三阶矩阵A=,若A的伴随矩阵的秩为1,则必有()
随机试题
根据基期的不同,增长量可分为()。
男性,40岁,阵发性腹部绞痛,伴恶心、呕吐,停止排气、排便1天。查体:急性病容,呼吸深而快,皮肤干燥,弹性差,腹部中部膨隆,可见肠形,伴轻度压痛,可闻气过水声。血生化:pH7.32,K+3.1mmol/L,Na+140mmol/L,Cl-98mmol/L,
感冒的治疗.可分别采用辛温解表或辛凉解表.此属于
某村村民因在外打工,本村集体所有的土地无人耕种,该村决定将部分土地承包给邻村的人耕种,对此说法正确的是:
对各向异性的膨胀岩土,应测定其不同方向的()。
进出口货物完税后,如因收发货人或其代理人违反规定而造成少征或漏征税款的,海关在1年内可以追缴。()
微山湖位于枣庄市境内,是当年铁道游击队经常活动的地方。()
(2016·江西)为切实保障教师的合法权益,我国《教师法》赋予了教师申诉的权利。当教师提出申诉时,必须符合韵条件不包括()
在日常生活中,我们经常会听到这么一句话——“身在福中不知福”,这句话生动地告诉我们()。
Themostfamiliarheadachecomesfrom______tightnessintheback,headandneck,whichmightbecausedinturnbyexertion,orw
最新回复
(
0
)