首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设h(t)为三阶可导函数,u=h(xyz),h(1)=fˊˊxy(0,0),hˊ(1)=fˊˊyx(0,0),且满足 求u的表达式,其中
设h(t)为三阶可导函数,u=h(xyz),h(1)=fˊˊxy(0,0),hˊ(1)=fˊˊyx(0,0),且满足 求u的表达式,其中
admin
2019-03-12
56
问题
设h(t)为三阶可导函数,u=h(xyz),h(1)=fˊˊ
xy
(0,0),hˊ(1)=fˊˊ
yx
(0,0),且满足
求u的表达式,其中
选项
答案
uˊ
x
=yzhˊ(xyz),uˊˊ
xy
=zhˊ(xyz)+xyz
2
hˊˊ(xyz), uˊˊˊ
xyz
=hˊ(xyz)+xyzhˊˊ(xyz)+2xyzhˊˊ(xyz)+x
2
y
2
z
2
hˊˊˊ(xyz), 故3xyzhˊˊ(xyz)+hˊ(xyz)=0,令xyz=t,得3thˊˊ(t)+hˊ(t)=0. 设v=hˊ(t),得3tvˊ+v=0,分离变量,得v=[*],从而h(t)=C
1
[*]+C
2
. 又f(x,0)=0,则易知fˊ
x
(0.0)=0,当(x,y)≠(0,0)时, [*] 于是fˊ
x
(0,y)=-y,所以fˊˊ
xy
(0,0)=-1,由对称性知fˊˊ
yx
(0,0)=1,所以h(1)=-1,hˊ(1)=1,从而C
1
=[*],C
2
=[*] 这样h(t)=[*],从而u=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/lNP4777K
0
考研数学三
相关试题推荐
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求A的特征值.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
设n>1,n元齐次方程组AX=0的系数矩阵为在有非零解时求通解.
将下列函数在指定点处展开为泰勒级数:(Ⅰ),在x=1处;(Ⅱ)ln(2x2+x一3),在x=3处.
考察级数,p为常数.(Ⅰ)证明:(n=2,3,4,…);(Ⅱ)证明:级数anp当p>2时收敛,当p≤2时发散.
设u=u(x,y,z)具有连续偏导数,而x=rsinφocosθ,y=rsinφsinθ,z=rcosφ.(Ⅰ)若=0,试证明u仅为φ与θ的函数;(Ⅱ)若,试证明u仅为r的函数.
求函数f(x,y)=3x2+3y2一x2在D={(x,y)|x2+y2≤16}上的最大值与最小值.
某厂家生产的一种产品同时在两个市场销售,售价分别为P1和P2;销售量分别为Q1和Q2;需求函数分别为Q1=24—0.2P1,Q2=10—0.05P2;总成本函数C=35+40(Q1+Q2).试问:厂家如何确定两个市场的售价,才能使其获得的总
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1—θ)2,EX=2(1—θ)(θ为未知参数).对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
设X一N(μ,σ2),其中μ和σ2(σ>0)均为未知参数,从总体X中抽取样本X1,X2,…,Xn样本均值为,则未知参数μ和σ2的矩估计量分别为.
随机试题
国际私法
HIV感染抗体检测的确证试验包括
患者男性,70岁。突然头痛、恶心、呕吐3小时。体检:血压190/115mmHg,口角右偏,左侧鼻唇沟变浅,伸舌左偏,左侧偏瘫若病变继续发展,首先最可能出现的瞳孔变化是
构成脱氢酶辅酶的维生素是
如果货币的远期汇率高于即期汇率,则称该货币远期()。
某工厂与某派出所建立了警民共建关系,由派出所将其一占地20平方米的平房布置成工厂的产品展示厅,由工厂无偿使用。下列关于这20平方米土地及对应房产的税务处理正确的是()。
A县地税局认为B工厂存在偷税现象,遂对其作出罚款的行政处罚。B工厂为此提出了行政诉讼。在诉讼中,经过调查认定B工厂并不存在偷税现象。据此,受诉法院应该作出()。
∫0+∞x2dx.
路由器是互联网中重要的网络设备,它的主要功能是()。
ReadthetextbelowaboutopinionsonChina’scarmarket.Inmostofthelines(34-45),thereisoneextraword.Itiseithergra
最新回复
(
0
)