首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
z’x(x0,y0)一0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的 ( )
z’x(x0,y0)一0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的 ( )
admin
2018-08-23
35
问题
z’
x
(x
0
,y
0
)一0和z’
y
(x
0
,y
0
)=0是函数z=z(x,y)在点(x
0
,y
0
)处取得极值的 ( )
选项
A、必要条件但非充分条件
B、充分条件但非必要条件
C、充要条件
D、既非必要也非充分条件
答案
D
解析
若
则点(0,0)为其极小值点,但z’
x
(0,0),z’
y
=(0,0)均不存在.
转载请注明原文地址:https://kaotiyun.com/show/kPj4777K
0
考研数学二
相关试题推荐
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Oy下的标准形为y12+y22,且Q的第3列为证明A+E为正定矩阵,其中E为3阶单位矩阵.
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)T+(1,2,一1)T,k为任意常数.试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
已知齐次线性方程组(I)为又已知线性方程组(Ⅱ)的通解为x=k1(s,2,3,16)T+k2(2,1,2,t)T,其中k1,k2是任意常数.若方程组(I)与(Ⅱ)同解,试求m,n,s,t的值.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵,若AB=E,证明B的列向量组线性无关.
设A为n阶方阵,且满足A2=3A,E为n阶单位矩阵.如果A≠O,证明3E—A不可逆.
设(X,Y)在区域D={(x,y)|1≤x≤3,1≤y≤3}上服从均匀分布,事件A={X≤a},B={Y>a}.(1)若P(A∪B)=,求a;(2)设D0为事件A∪B所占的区域,随机地向D投点4次,Z为落入D0内的次数,求E(Z2).
设区域D由曲线=()
求其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图4—2).
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2.求f(x,y)在椭圆域上的最大值和最小值.
(1994年)求曲线y=3-|χ2-1|与χ轴围成封闭图形绕y=3旋转所得的旋转体的体积.
随机试题
阅读《说笑》的第一段:自从幽默文学提倡以来,卖笑变成了文人的职业。幽默当然用笑来发泄,但是笑未必就表示着幽默。刘继庄《广阳杂记》云:“驴鸣似哭,马嘶如笑。”而马并不以幽默名家,大约因为脸太长的缘故。老实说,一大部分人的笑,也只等于马鸣萧萧,充不得
She’supstairs______letters.
全身性皮肤瘙痒中,下列哪项是正确的
“一夫法”是指将食、中、无名、小指相并,四横指的间距为3寸,其量取标准应按
具酸碱两性的生物碱是
监理工程师在收到承包方送交的索赔报告和有关资料后,于( )天内给予答复。
清代功举办过几次的“千叟宴”,是清宫中的规模最大、与宴者最多的盛大御宴。()
关于凸极同步发电机短路,下列说法正确的有()。
在数据库中,产生数据不一致的根本原因是()。
法国古典主义的奠基之作是_______,所谓“熙德”即阿拉伯语_______之意。
最新回复
(
0
)