首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(10)设A为4阶实对称矩阵,且A2+A=O.若A的秩为3,则A相似于
(10)设A为4阶实对称矩阵,且A2+A=O.若A的秩为3,则A相似于
admin
2018-08-01
19
问题
(10)设A为4阶实对称矩阵,且A
2
+A=O.若A的秩为3,则A相似于
选项
A、
B、
C、
D、
答案
D
解析
方法1:设λ为A的特征值且ξ为对应的特征向量,则有A
m
ξ=λ
m
ξ(m=1,2,…),故有
(A
2
+A)ξ=Oξ=0,
即(λ
2
+λ)ξ=O,
因ξ≠0,得λ
2
+λ=0,从而有λ=0或λ=-,又因r(A)=3,所以A的非零特征值有3个,有1个特征值为0,即A的全部特征值为:-1,-1,-1,0,所以只有选项(D)正确.
方法2:设A按列分块为A=[α
1
,α
2
,α
3
,α
4
],由r(A)=3,知A的列向量组的极大无关组含3个向量,不妨
设α
1
,α
2
,α
3
是A的列向量组的极大无关组.由于A
2
=-A,即
A[α
1
,α
2
,α
3
,α
4
]=-[α
1
,α
2
,α
3
,α
4
],
即[Aα
1
,Aα
2
,Aα
3
,Aα
4
]=[-α
1
-α
2
-α
3
-α
4
],
得Aα
j
=-α
j
,j=,2,3,4.
由此可知-1是A的特征值值且α
1
,α
2
,α
3
为对应的3个线性无关的特征向量,故-1至少是A的3重特征值.
而r(A)=3<4,知0也是A的一个特征值.于是知A的全部特征值为:-1,-1,-1,0,且每个特征值对应的线性无关特征向量个数正好等于该特征值的重数,故A相似于对角矩阵D=diag(-1,-1,-1,0),故选项(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/C2j4777K
0
考研数学二
相关试题推荐
设函数f(u)有连续的一阶导数,f(0)=1,且函数满足求z的表达式.
已知在x>0处有二阶连续导数,且满足.求f(u)的表达式.
(2007年试题,一)设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
证明:对任意的x,y∈R且x≠y,有
求微分方程的通解.
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
在上半平面上求一条上凹曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ的长度的倒数(Q为法线与x轴的交点),且曲线在点(1,1)处的切线与z轴平行.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αS).
随机试题
简述矛盾的同一性和斗争性。
易合并恶性胸膜间皮瘤的尘肺见于
某早产儿体温不升,需用热水袋保暖,操作不当的是
城市与区域高效率运转的条件和可持续发展的保障是()。
按照先进性的原则,协调和平衡工期、质量、安全、环保与成本之间的对立统一关系,反映()造价管理的思想。
()原则即内部控制应包括基金销售机构的基金销售部门、涉及基金销售的分支机构及网点、人员,并涵盖到基金销售的决策、执行、监督、反馈等各个环节,避免管理漏洞的存在。
根据《信托法》,受托人以()为限向受益人承担支付信托利益的义务。
小东每次锁门离家后,明知已锁过门,但总是怀疑门没有锁上,非要返回检查才安心。他的这种表现属于()。
在一台Cisco路由器的g0/1端口上,用标准访问控制列表禁止源地址为10.0.0.0-10.255.255.255和172.16.0.0.172.31.255.255的数据包进出路由器。下列access-list配置,正确的是()。
在Access中,窗体不能完成的功能是
最新回复
(
0
)