首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足.则f(x)的表达式是____________.
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足.则f(x)的表达式是____________.
admin
2014-05-19
75
问题
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足
.则f(x)的表达式是____________.
选项
答案
f(x)=x
2
(x≥0).
解析
【分析一】由定积分的几何意义知:
由曲线y=f(x),x、y轴及直线x=t>0所围成的曲边梯形的面积,
由曲线x=g(y),y轴(y≥f(0))及直线y=f(t)所围成的曲边三角形的面积.x=g(y)与y=f(x)互为反函数,代表同一条曲线,它们面积之和是长方形面积(边长分别为t与f(t)),见右图于是
因此tf(t)=t
3
,f(t)=t
2
(t≥0),即f(x)=x
2
(x≥0).【分析二】先化简题设方程的左端式子,有
于是
即tf(t)=t
3
,f(t)=t
2
(t≥0).因此f(x)=x
2
(x≥0).【分析三】将题设方程两边求导得
即f(t)+g[f(t)]f
’
(t)=3t
2
,f(t)+tf
’
(t)=3t
2
,亦即[tf(t)]
’
=3t
2
(原方程中令t=0,等式自然成立,不必另加条件).将上式积分得
因f(t)在[0,+∞)上连续,故必有C=0.因此f(x)=x
2
(x≥0).
转载请注明原文地址:https://kaotiyun.com/show/CP34777K
0
考研数学二
相关试题推荐
(13年)设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij巧的代数余子式.若aij+Aij=0(i,j=-1,2,3),则|A|=_______.
-1
1/x
(1989年)求微分方程y’’+5y’+6y=2e-x的通解.
(1999年)曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,试求切线方程和这个图形的面积,当切点沿曲线趋于无穷远时,该面积的变换趋势如何?
设三阶矩阵A的特征值为-2,0,2,则下列结论不正确的是()。
微分方程y"-4y=xe2x+2sinx的特解形式为()。
设抛物线y=x2与它的两条相互垂直的切线所围成的平面图形的面积记为S,其中一条切线与抛物线相切于点A(a,a2)(a>0)。(Ⅰ)求S=SA的表达式;(Ⅱ)当a取何值时,面积SA最小?
(2001年试题,十二)已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2β3,β4,卢4也是.Ax=0的一个基础解系.
(2002年试题,十二)已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
随机试题
下列关于劳务派遣的表述错误的是()
早期的行政管理学研究的雷点是组织结构和程序,其理论的逻辑起点是_______。
Insteadofresearchingandwritingtheirpapers,somestudents______.Ifteacherswanttofindoutiftheirstudentswrotethe
中毒后禁用脂肪类食物的是
费先生5年后购房目标终值50万元,20年后子女教育金目标终值20万元,30后年退休金目标终值100万元,投资报酬率8%,房贷利率6%,贷款20年,贷款七成,以目标并进法,在人生各阶段,各需要的储蓄投入额为( ),才能完成所有目标。
下列不属于商业银行风险评估与控制环境的是()。
被告人江某系某区公安分局预审员。江某在办理田某故意伤害案时,对田某的年龄进行了涂改,并伙同户籍科张某对田某的户籍记录也做了修改,使田某未受到追诉。为此,江某和张某各收受田某家属人民币1万元。问:对江某和张某的行为应当如何处理?
下列叙述中正确的是()。
若有定义inta[10],*p=a,则p+6表示()。
InternationalPublishingHouse119SharonRoad,5thFloor,Room503Tel:549-0344Fa
最新回复
(
0
)