首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值是1,2,-1,矩阵A的属于特征值1与2的特征向量分别是α1=(2,3,-1)T与α2=(1,a,2a)T,A*是A的伴随矩阵,求齐次方程组(A*-2E)χ=0的通解.
设3阶实对称矩阵A的特征值是1,2,-1,矩阵A的属于特征值1与2的特征向量分别是α1=(2,3,-1)T与α2=(1,a,2a)T,A*是A的伴随矩阵,求齐次方程组(A*-2E)χ=0的通解.
admin
2018-06-12
74
问题
设3阶实对称矩阵A的特征值是1,2,-1,矩阵A的属于特征值1与2的特征向量分别是α
1
=(2,3,-1)
T
与α
2
=(1,a,2a)
T
,A
*
是A的伴随矩阵,求齐次方程组(A
*
-2E)χ=0的通解.
选项
答案
由A的特征值是1,2,-1,可知行列式|A|=-2,那么A
*
的特征值是-2,-1,2.于是 [*] 从而A
*
-2E~[*] 所以r(A
*
-2E)=r(∧)=2.那么,(A
*
-2E)χ=0的基础解系由一个线性无关的解向量所构成. 又因矩阵A属于λ=-1的特征向量就是A
*
属于λ=2的特征向量,亦即A
*
-2E属于λ=0的特征向量. 由于A是实对称矩阵,不同特征值的特征向量相互正交.设矩阵A属于特征值λ=-1的特征向量是α
3
=(χ
1
,χ
2
,χ
3
)
T
,则有 [*] [*]a=-2[*]α
3
=(2,-1,1)
T
. 所以齐次方程组(A
*
-2E)χ=0的通解是:k(2,-1,1)
T
,其中k为任意实数.
解析
转载请注明原文地址:https://kaotiyun.com/show/CTg4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)χ=0()
设X1,X2,…,Xn是取自正态总体N(μ,σ2)的简单随机样本,其样本均值和方差分别为,S2,则服从自由度为n的χ2分布的随机变量是
微分方程y′=的通解为_______.
设随机变量X的概率密度为f(χ)=记事件A={X≤1},对X进行4次独立观测,到第四次事件A刚好出现两次的概率就为q,则q=_______.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重量50千克,标准差为5千克,若用最大载重为5吨的汽车承运,试用中心极限定理说明每辆车最多可装多少箱,才能保障不超载的概率大于0.977(Ф(2)=0.977).
设二维随机变量(X,Y)的分布律为则X与Y的协方差Cov(X,Y)为________
设f(x,y)为具有二阶连续偏导数的二次齐次函数,即对任何x,y,t下式成立f(tx,ty)=t2f(x,y).证明:
幂级数的收敛半径为___________.
f(x)在[_一1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
随机试题
We_.Pleasefastenyourseatbelt.()
新生儿通过胎盘从母体中获得的免疫球蛋白是
男性,23岁。3年来多次于夜晚饱餐后次日清晨醒来发现四肢不能活动,大小便正常,吞咽和呼吸正常,数日后恢复,已发作5次。今晨醒来又出现四肢不能运动。体检:颅神经正常,四肢肌力均为1级,腱反射低,无病理反射,感觉正常,该患者首选治疗措施是
编制数量指标指数一般是采用()做同度量因素。
机器设备的经济性贬值通常与()有关。
如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.求AE的长.
Loveroftowns______Iam.IrealizethatIoweadebttomyearlycountrylife.
下列关于WindowsServer2003系统下DNS服务器的描述中,错误的是()。
下列链表中,其逻辑结构属于非线性结构的是
下面程序有注释的语句中,错误的语句是( )。 #include <iostream> using namespace std; class A{ int a; public: void show A(
最新回复
(
0
)