首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值是1,2,-1,矩阵A的属于特征值1与2的特征向量分别是α1=(2,3,-1)T与α2=(1,a,2a)T,A*是A的伴随矩阵,求齐次方程组(A*-2E)χ=0的通解.
设3阶实对称矩阵A的特征值是1,2,-1,矩阵A的属于特征值1与2的特征向量分别是α1=(2,3,-1)T与α2=(1,a,2a)T,A*是A的伴随矩阵,求齐次方程组(A*-2E)χ=0的通解.
admin
2018-06-12
63
问题
设3阶实对称矩阵A的特征值是1,2,-1,矩阵A的属于特征值1与2的特征向量分别是α
1
=(2,3,-1)
T
与α
2
=(1,a,2a)
T
,A
*
是A的伴随矩阵,求齐次方程组(A
*
-2E)χ=0的通解.
选项
答案
由A的特征值是1,2,-1,可知行列式|A|=-2,那么A
*
的特征值是-2,-1,2.于是 [*] 从而A
*
-2E~[*] 所以r(A
*
-2E)=r(∧)=2.那么,(A
*
-2E)χ=0的基础解系由一个线性无关的解向量所构成. 又因矩阵A属于λ=-1的特征向量就是A
*
属于λ=2的特征向量,亦即A
*
-2E属于λ=0的特征向量. 由于A是实对称矩阵,不同特征值的特征向量相互正交.设矩阵A属于特征值λ=-1的特征向量是α
3
=(χ
1
,χ
2
,χ
3
)
T
,则有 [*] [*]a=-2[*]α
3
=(2,-1,1)
T
. 所以齐次方程组(A
*
-2E)χ=0的通解是:k(2,-1,1)
T
,其中k为任意实数.
解析
转载请注明原文地址:https://kaotiyun.com/show/CTg4777K
0
考研数学一
相关试题推荐
设f(χ,y)在全平面有连续偏导数,曲线积分∫Lf(χ,y)dχ+χcosydy在全平面与路径无关,且f(χ,y)dχ+χcosydy=t2,求f(χ,y).
设平面上连续曲线y=f(χ)(a≤χ≤b,f(χ)>0)和直线χ=a,χ=b及χ轴所围成的图形绕χ轴旋转一周所得旋转体的质心是(,0,0),则的定积分表达式是_______.
设f(x)=arcsinx,ξ为f(x)在[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限
设两个相互独立的事件A与B至少有一个发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=_________
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.计算ABT与ATB;
已知α=[1,k,1]T是A-1的特征向量,其中A=,求k及a所对应的特征值.
若函数f(x)在(-∞,-+∞)内满足关系式f’(x)=f(x),且f(0)=1.证明:f(x)=ex.
设函数,若曲线积分∫LPdx+Qdy在区域D={(x,y)|y>0"上与路径无关,求参数λ.
设z=z(u,v)具有二阶连续偏导数,且z=z(z-2y,x+3y)满足求z=z(u,v)的一般表达式.
当x→0时,无穷小的阶数最高的是().
随机试题
从性质上讲,资产的评估价值是注册资产评估师对被评估资产在评估基准日的()估计值。
从逻辑功能上来划分,可以把计算机网络划分为________。
若=8,则a=________
反映维生素B12负平衡的早期指标是
属于药物经肾排泄的特点的是
运用核算法对无形资产重置成本估算时的直接成本是按()来计算的。
2001年6月,芦某(男)与李某(女)登记结婚。2008年8月,尹某向法院起诉与李某离婚。下列情形叶中,尹某有权提出离婚的情形是()。
在幼儿的一幅画中,爸爸盖着被子躺在床上,但是看上去爸爸如同盖了一块透明的布一样,我们仍能直接看到爸爸的身体。说明此时幼儿绘画能力处于的阶段是()
Whydoesthewomanwanttobuyahandbag?
长征
最新回复
(
0
)