首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
admin
2020-12-10
46
问题
已知η
1
,η
2
,η
3
,η
4
是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
选项
A、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
B、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
+η
1
C、η
1
+η
2
,η
2
+η
3
,η
3
一η
4
,η
4
一η
1
D、η
1
,η
2
,η
3
,η
4
的等价向量组.
答案
A
解析
等价向量组不能保证向量个数相同,因而不能保证线性无关.例如向量组η
1
,η
2
,η
3
,η
4
,η
1
+η
2
与向量组η
1
,η
2
,η
3
,η
4
等价,但前者线性相关,因而不能是基础解系.故D不正确.B、C均线性相关,因此不能是基础解系.故B与C也不正确.注意到:(η
1
+η
2
)一(η
2
一η
3
)一(η
3
一η
4
)一(η
4
+η
1
)=0,(η
1
+η
2
)一(η
2
+η
3
)+(η
3
一η
4
)+(η
4
一η
1
)=0,唯有A,η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
是Ax=0的解,又由(η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
)=(η
1
,η
2
,η
3
,η
4
)
,且
知η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
线性无关,且向量个数与η
1
,η
2
,η
3
,η
4
相同.所以A也是Ax=0的基础解系.故选A.
转载请注明原文地址:https://kaotiyun.com/show/CW84777K
0
考研数学二
相关试题推荐
极限.
证明:当x<1且x≠0时,.
设f"(x)在x=0处连续,且,则()。
t=-7
设D是由直线y=1,y=x,y=-x围成的有界区域,计算二重积分dxdy.
已知函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex。求曲线y=f(x3)|f(-t2)dt的拐点。
设矩阵A=(1)若A有一个特征值为3,求a;(2)求可逆矩阵P,使得PTA2P为对角矩阵.
设λ0为A的特征值.(1)证明:AT与A特征值相等;(2)求A2,A2+2A+3E的特征值;(3)若|A|≠0,求A-1,A*,E-A-1的特征值.
随机试题
Ig分子的基本结构是
珠蛋白生成障碍性贫血又称________,本病多见于________。重型者出现________、________,脾切除可________,对减轻溶血或减少输血量有帮助。
MRI测量心包厚度大于多少异常
与小儿遗尿关系最密切的脏腑是
患者女性,肥胖,有痤疮,紫纹,化验血皮质醇增高,血糖增高,小剂量地塞米松抑制试验血皮质醇较对照日低38%,大剂量地塞米松抑制试验较对照日低78%。错误的减肥方法是
为什么喝一小杯酒脸就变得红彤彤?日前,研究人员找到了些许头绪,50%的亚洲人,肝脏中的乙醇代谢酶都存在突变现象,其代谢的速率比正常酶高出100倍。这使得代谢产物乙醛迅速聚集,导致面部血管充血肿胀,从而变成一张大红脸。这一基因变异在华东华南一带发生率高达99
证券交易内幕信息的知情人包括:持有公司( )以上股份的股东及其董事、监事、高级管理人员,公司的实际控制人及其董事、监事、高级管理人员。
血液中的高浓度脂肪蛋白质含量的增加,会使人体阻止吸收过多胆固醇的能力增加,从而降低血液中的胆固醇。有些人通过规律的体育锻炼和减肥,能明显地增加血液中高浓度脂肪蛋白质的含量。根据上述论述,可以推出的最恰当的结论是:
Inthissection,youareaskedtowriteanessaybasedonthefollowingchart.Inyourwriting,youshould1)interpretthechar
Ourpresentgenerationofculturalcritics,arrivingaftertheassaultofpostmodernismandtheincreasinglywidespreadcommerci
最新回复
(
0
)