首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
admin
2020-12-10
52
问题
已知η
1
,η
2
,η
3
,η
4
是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
选项
A、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
B、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
+η
1
C、η
1
+η
2
,η
2
+η
3
,η
3
一η
4
,η
4
一η
1
D、η
1
,η
2
,η
3
,η
4
的等价向量组.
答案
A
解析
等价向量组不能保证向量个数相同,因而不能保证线性无关.例如向量组η
1
,η
2
,η
3
,η
4
,η
1
+η
2
与向量组η
1
,η
2
,η
3
,η
4
等价,但前者线性相关,因而不能是基础解系.故D不正确.B、C均线性相关,因此不能是基础解系.故B与C也不正确.注意到:(η
1
+η
2
)一(η
2
一η
3
)一(η
3
一η
4
)一(η
4
+η
1
)=0,(η
1
+η
2
)一(η
2
+η
3
)+(η
3
一η
4
)+(η
4
一η
1
)=0,唯有A,η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
是Ax=0的解,又由(η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
)=(η
1
,η
2
,η
3
,η
4
)
,且
知η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
线性无关,且向量个数与η
1
,η
2
,η
3
,η
4
相同.所以A也是Ax=0的基础解系.故选A.
转载请注明原文地址:https://kaotiyun.com/show/CW84777K
0
考研数学二
相关试题推荐
极限.
设三阶矩阵A的特征值为-1,-1,,其对应的线性无关的特征向量为a1,a2,a3,令P=(2a1+a2,a1-a2,2a3),则P-1A*P=().
设y=x3+3ax2+3bx+c在x=-1处取极大值,又(0,3)为曲线的拐点,则()。
二阶常系数非齐次线性方程y’’一5y’+6y=2e2x的通解为y=________。
解微分方程y2dx一(y2+2xy—x)dy=0.
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+gy=f(x)的三个特解.(I)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0
设f(x)在[a,b]上二阶可导,且f(a)=f(b),f″(x)≠0,则().
设f(x)为可导的偶函数,且满足则曲线y=f(x)在点(-1,f(-1))的切线方程为___________。
(2000年)已知f(χ)是周期为5的连续函数.它在χ=0某个邻域内满足关系式f(1+sinχ)-3f(1-sinχ)=8χ+α(χ)其中α(χ)是当χ→0时比χ高阶的无穷小,且f(χ)在χ=1处可导,求曲线y=f(χ)在点(6,f(6
对n元实二次型f=xTAx,其中x=(x1,x2,…,xn)T。试证f在条件x12+x22+…+xn2=1下的最大值恰好为矩阵A的最大特征值。
随机试题
试述太平天国农民战争的意义。
阅读《答李翊书》中的一段文字,然后回答问题。气,水也;言,浮物也。水大而物之浮者大小毕浮。气之与言犹是也,气盛则言之短长与声之高下者皆宜。……“气”和“言”指的是什么?
关于犯罪嫌疑人、被告人逃匿、死亡案件违法所得的没收程序,下列哪一说法是正确的?(2012年试卷2第38题)
以下对爆破作业描述不正确的是()。(1)雷雨季节宜采用电雷管起爆法起爆。(2)炸药反应不完全时,不会引起有毒气体含量增加。(3)同一爆破网络应使用同厂、同批、同型号的电雷管。(4)处理盲炮时进行安全警戒。
行业的成长实际上是指( )。
企业会计方法和程序前后各期( )。
某公司正处于快速发展时期,急需高素质人才加盟,为此人力资源部门和多家猎头公司签订了合作协议,开始进行大张旗鼓的人才招募选拔。该公司人才招募选拔的流程是:猎头公司推荐候选人,候选人资料经人力资源部经理筛选后交总经理审阅,由总经理决定是否面试,再由人力资源部和
根据《企业所得税法》及其实施条例的有关规定,不得提取折旧的固定资产是()。
出境旅游领队带领旅游团入中国境的服务包括()
(2015·河南)既是课程标准的具体化,也是师生进行教学的主要依据的是教科书。()
最新回复
(
0
)