首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(i)为 齐次线性方程组(ii)的基础解系为ξ1=[一1,1,2,4]T,ξ2=[1,0,1,1]T. (1)求方程组(i)的基础解系; (2)求方程组(i)与(ii)的全部非零公共解,并将非零公共解分别由方程组(i),
已知齐次线性方程组(i)为 齐次线性方程组(ii)的基础解系为ξ1=[一1,1,2,4]T,ξ2=[1,0,1,1]T. (1)求方程组(i)的基础解系; (2)求方程组(i)与(ii)的全部非零公共解,并将非零公共解分别由方程组(i),
admin
2019-05-14
54
问题
已知齐次线性方程组(i)为
齐次线性方程组(ii)的基础解系为ξ
1
=[一1,1,2,4]
T
,ξ
2
=[1,0,1,1]
T
.
(1)求方程组(i)的基础解系;
(2)求方程组(i)与(ii)的全部非零公共解,并将非零公共解分别由方程组(i),(ii)的基础解系线性表示.
选项
答案
(1)对齐次线性方程组(i)的系数矩阵作初等行变换,得 [*] 其同解方程组为 [*] 由此解得方程组(i)的基础解系为 η
1
=[2,-1,1,0]
T
,η
2
=L-1,1,0,1]
T
. (2)由(1)解得方程组(i)的基础解系η
1
,η
2
.于是,方程组(i)的通解为 k
1
η
1
+k
2
η
2
=k
1
[2,-1,1,0]
T
+k
2
[-1,1,0,1]
T
(k
1
,k
2
为任意常数). 由题设知,方程组(ii)的基础解系为ξ
1
,ξ
2
,其通解为 l
1
ξ
1
+l
2
ξ
2
=l
1
[-1,1,2,4]
T
+l
2
[1,0,1,1]
T
(l
1
,l
2
为任意常数). 为求方程组(i)与(ii)的公共解,令它们的通解相等,即 k
1
[2,-1,1,0]
T
+k
2
[-1,1,0,1]
T
=l
1
[一1,1,2,4]
T
+l
2
[1,0,1,1]
T
. 从而,得到关于k
1
,k
2
,l
1
,l
2
的方程组 [*] 对此方程组的系数矩阵作初等行变换,得 [*] 由此可得,k
1
=k
2
=l
2
,l
1
=0. 所以.令k
1
=k
2
=k,方程组(i),(ii)的非零公共解是 k[2,-1,1,0]
T
+k[-1,1,0,1]
T
=k[1,0,1,1]
T
(k为任意非零常数). 并且,方程组(i),(ii)的非零公共解分别由方程组(i),(ii)的基础解系线性表示为 k(η
1
+η
2
)和0.ξ
1
+kξ
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/CY04777K
0
考研数学一
相关试题推荐
试求函数y=arctanx在x=0处的各阶导数。
设函数f(x)==___________。
求幂级数的收敛域及和函数。
求。
设直线L过A(1,0,0),8(0,1,1)两点,将L绕Z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω。(Ⅰ)求曲面∑的方程;(Ⅱ)求Ω的形心坐标。
一个正四面体的四个面上分别标有数字1,2,3,4.连续抛掷两次,以底面上数字作为掷出的数字,记X,Y分别表示两次掷出数字的最大值与最小值.计算X+Y与X-Y的协方差矩阵的逆矩阵.
设直角坐标(χ,y)与极坐标(r,θ)满足χ=rcosθ,y=rsinθ.若曲线г的极坐标方程是r=3-2sin0,求г上对应于θ=处的切线与法线的直角坐标方程.
求下列微分方程的通解或特解:+2y=e-xcosx.
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率a,并用泊松分布求出a的近似值(小数点后取两位有效数字).
随机试题
根据《创业板首发管理暂行办法》的规定,公司在创业板首次公开发行股票并上市,应当符合的条件有()。
从本质上看加涅的刺激-反应学习就是巴甫洛夫的经典性条件反射。()
关于肾的构造的描述,正确的是()
Whenpeoplearestruckbylightening,theyfalltothegroundasthoughtheywerestruckbyasevereblowtothehead.Afterthe
两步滴定法测定阿司匹林片的含量时,每1ml氢氧化钠溶液(0.1mol/L)相当于阿司匹林(分子量=180.16)的量是
对于公布的选民名单有不同意见的,可以向选举委员会提出申诉。申诉人对选举委员会作出的处理决定不服的,可以采取以下哪些措施?()
下列关于业主对工程项目管理的表述中,正确的是()
下列各项动机中,属于企业筹资动机的有()。
【2015.重庆市属】德育只存在于学校的品德课程之中。()
已知10件产品中有4件一等品,从中任取2件,则至少有1件一等品的概率为().
最新回复
(
0
)